
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2000

Scheduling based on earliness and tardiness criteria
in assembly job shops
Supachai Pathumnakul
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons, and the Operational Research Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Pathumnakul, Supachai, "Scheduling based on earliness and tardiness criteria in assembly job shops " (2000). Retrospective Theses and
Dissertations. 12355.
https://lib.dr.iastate.edu/rtd/12355

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/12355?utm_source=lib.dr.iastate.edu%2Frtd%2F12355&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print colored or poor quality illustfations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author dkl not send UMI a complete manuscript

and there are missing pages, these will t>e noted. Also, if unauthorized

copyright material had to t>e removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the origir^l, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overfaps.

Photographs included in the original manuscript have t)een reproduced

xerographicaily in this copy. Higher quality 6* x 9' black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell lr>formation arKl Learning
300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA

800-521-0600

www.manaraa.com

www.manaraa.com

Scheduling based on earliness and tardiness criteria in

assembly job shops

by

Supachai Pathumnakul

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major; Industrial Engineering

Major Professor: Pius J. Egbelu

Iowa State University

Ames, Iowa

2000

Copyright © Supachai Pathumnakul, 2000. All rights reserved.

www.manaraa.com

UMI Number 9990481

UMÎ
UMI Microfomi9990481

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Art)or, Ml 48106-1346

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the Doctoral dissertation of

Supachai Pathumnakul

has met the dissertation requirements of Iowa State University

Major Professor

For the Major Program

For the Grd^at^College

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES xii

ABSTRACT xiv

CHAPTER 1 INTRODUCTION 1

1.1 Problem statement 2

1.2 Research motivation 2

1.3 Research objective 3

1.4 The assembly job shop environment 5

1.5 Problem assumptions 7

1.6 Contribution of the research 7

1.7 Organization of the dissertation 8

CHAPTER 2 LITERATURE REVIEW 10

2.1 Single machine problem 10

2.1.1 Eariiness cost model 10

2.1.2 Tardiness cost model 11

2.1.3 Eariiness and Tardiness costs (E/T) model 12

2.2 Job shop with assembly considerations 17

CHAPTER 3 MODEL DEVELOPMENT IN SINGLE MACHINE PROBLEM 20

3.1 Single machine problem with eariiness cost minimization 20

3.1.1 Problem formulation 20

3.1.2 Local optimality condition 21

3.1.3 Heuristics for the early problem 27

3.1.3.1 Algorithm I development 28

3.1.3.2 Algorithm II development 38

3.2 Single machine problem with the sum of the weighted eariiness
and weighted tardiness cost minimization 45

3.2.1 Problem formulation 45

3.2.2 Heuristics for early/tardy problem 47

3.2.2.1 Algorithm III development 49

www.manaraa.com

iv

3.2.2.2 Algorithm IV development 55

CHAPTER 4 MODEL DEVELOPMENT IN ASSEMBLY JOB SHOP PROBLEM 57

4.1 Assembly job shop problem with earliness cost minimization 57

4.1.1 Problem formulation 59

4.1.2 Heuristic for assembly job shop problem with the weighted
earliness cost minimization 60

4.1.3 Algorithm V development 67

4.1.3.1 Machine conflict elimination method in single machine
problem (MCE) 67

4.1.3.2 Summary of algorithm V 69

4.2 Assembly job shop problem with the sum of weighted eariiness
and tardiness cost minimization 72

4.2.1 Problem formulation 73

4.2.2 Heuristic for assembly job shop problem with the sum of
weighted earliness and tardiness cost minimization 75

4.2.2.1 The case involving the realization of an infeasible.
solution after employing algorithm V 76

4.2.2.2 The case involving the realization of feasible
solution after employing algorithm V 81

4.2.3 Algorithm VI development 85

CHAPTER 5 HEURISTIC COMPARISON 90

5.1 Heuristic comparison in single machine problem 90

5.1.1 Single machine problem with eariiness cost minimization 90

5.1.2 Single machine problem with the sum of the weighted eariiness
and weighted tardiness cost minimization 93

5.2. Heuristic comparison in assembly job shop problem 98

5.2.1 Assembly job shop problem with eariiness cost minimization 98

5.2.2 Assembly job shop problem with the sum of weighted
eariiness and weighted tardiness cost minimization 100

CHAPTER 6 SUMMARY AND CONCLUSION 103

6.1 Summary of the research 103

6.2 Conclusion 106

6.3 Research contributions 107

www.manaraa.com

V

6.4 Possible extension 108

APPENDIX A PROOF OF THE PROPOSITIONS 109

APPENDIX B THE OW & MORTON ALGORITHM 118

APPENDIX C ALGORITHM ILLUSTRATION 120

C.I Algorithm I Illustration 120

C.2 MCE algorithm illustration 128

C.3 Algorithm V illustration 131

C.4 Algorithm VI illustration 134

APPENDIX D SENSITIVITY ANALYSIS 138

D.I Inferences drawn 165

D.1.1 Algorithms I and II 165

D.I.2 Algorithms III and IV 165

REFERENCES 167

ACKNOWLDGMENTS 171

www.manaraa.com

vi

LIST OF FIGURES

Figure 1.1 Product structure for assembly products 6

Figure 3.1 Jobs I and j overlap each other, if each completes on its due date 22

Figure 3.2 Illustration of proposition 1 22

Figure 3.3 Illustration of proposition 2 23

Figure 3.4 Illustration of proposition 3 24

Figure 3.5 Illustration of proposition 4 25

Figure 3.6 Illustration of proposition 5 26

Figure 3.7 Ideal solution for example 3.1 34

Figure 3.8 Schedule job 1 of example 3.1 34

Figure 3.9 Schedule job 2 of example 3.1 35

Figure 3.10 A schedule for example 3.1 36

Figure 3.11 Assign job 5 to fill in an imbedded idle time period A'i = (60, 64) 37

Figure 3.12 The best schedule for example 3.1 by algorithm I 37

Figure 3.13 Initial solution of example 3.1 (i.e. jobs are scheduled as early as
possible) 41

Figure 3.14 Initial solution of example 3.1 after shifting right in time 42

Figure 3.15 Schedule of jobs on R12 (i.e. jobs are scheduled as early as possible) 43

Figure 3.16 Schedule of jobs on R12 after shifting right in time 43

Figure 3.17 Job 8 is tardy on 45

Figure 3.18 An infeasible solution built by algorithm I in example 3.2 51

Figure 3.19 An initial schedule of example 3.2 (i.e. after right shifted in time) 52

Figure 3.20 Schedule after interchanging between jobs 1 and 2 in example 3.2 53

Figure 3.21 Schedule after interchanging between jobs 1 and 3 in example 3.2 53

Figure 3.22 Ideal solution for example 3.1 where virtual due-date of job 2 is 22 54

Figure 3.23 Final solution for example 3.2 by algorithm III 55

Figure 4.1 Product structure for assembly products 58

Figure 4.2 An ideal solution of the example 4.1 63

www.manaraa.com

vii

Figure 4.3 An ideal solution of example 4.1 after eliminating the latest
conflict at machine 1 64

Figure 4.4 An ideal solution of example 4.1 after eliminating the latest
conflict at machine 2 64

Figure 4.5 A feasible solution of the example 4.1 after eliminating all
machine conflicts 65

Figure 4.6 An ideal solution of example 4.1 after changing the schedule
of operation 2011 66

Figure 4.7. Product structure for assembly products in examples 4.2-4.3 77

Figure 4.8 The ideal solution of example 4.2 79

Figure 4.9 The infeasible solution after employing algorithm V in example 4.2 79

Figure 4.10 Ideal solution, for example 4.2, with virtual due-date "60-50-48" 80

Figure 4.11 A feasible solution after doing rightward shift the schedule in
Figure 4.9. 80

Figure 4.12 The ideal solution of example 4.3 83

Figure 4.13 An initial feasible solution after employing algorithm V in
example 4.3 83

Figure 4.14 Schedule after removing product 3 84

Figure 4.15 Schedule after removing product 3 and doing rightward shift
10 unit times for operations 1011 and 1111 84

Figure 4.16 Schedule after removing product 3 and doing rightward shift
2 unit times for operations 1312 and 1412 84

Figure 4.17 Schedule after removing product 2 86

Figure 4.18 Schedule after removing product 2 and doing rightward shift
of 10 unit times 86

Figure 4.19 Ideal solution, for example 4.3, with virtual due-date " 70-90-80" 87

Figure 4.20 A feasible solution of the problem with virtual due-date "70-90-80" 87

Figure A.1 Jobs I and j overiap each other, if each completes on its due date 110

Figure A.2 Illustration of the proposition 1 110

Figure A.3 Proof of proposition 1 111

www.manaraa.com

viii

Figure A.4 Illustration of the proposition 2 112

Figure A.5 Proof of proposition 2 112

Figure A.6 Illustration of the proposition 3 113

Figure A.7 Proof of proposition 3 114

Figure A.8 Illustration of the proposition 4 115

Figure A.9 Illustration of the proposition 5 116

Figure C.1 Ideal solution for example 3.1 121

Figure C.2 Scheduled job 1 of example 3.1 121

Figure C.3 Schedule job 2 of example 3.1 122

Figure C.4 Schedule job 3 of example 3.1 123

Figure C.5 Schedule job 6 of example 3.1 124

Figure C.6 Job schedule for example 3.1 124

Figure C.7 Assign job 5 to fill in the imbedded idle time period A'i = (60, 64) 125

Figure C.8 Schedule job 6 of example 3.1 after assigning job 5 to fill
A' i=(60.64) 126

Figure C.9 The best job schedule obtained from Algorithm I 127

Figure C.10 Schedule operation 1011 in example 4.1 129

Figure C.11 Schedule operation 1111 in example 4.1 129

Figure C.12 Schedule operation 2011 in example 4.1 130

Figure C.13 The schedule of example 4.1 after moving operation 1412 to
the position of operation 1312 in Figure 4.5 134

Figure C.14 A schedule in example 4.2 after removing product 1 from the
schedule in Figure 4.11. 136

Figure D.1 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 15 job problem with eariiness penalty
minimization 141

Figure D.2 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 20 job problem with eariiness penalty
minimization 142

Figure D.3 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 25 job problem with eariiness penalty
minimization 143

www.manaraa.com

ix

Figure D.4 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 30 job problem with eariiness penalty
minimization 144

Figure D.5 Performance comparison of algorithms I & II relative to the ratio of
eariiness penalty and processing time in a 15 job problem with
eariiness penalty minimization 145

Figure D.6 Performance comparison of algorithms I & II relative to the ratio of
eariiness penalty and processing time in a 20 job problem with
eariiness penalty minimization 146

Figure D.7 Performance comparison of algorithms I & II relative to the ratio of
eariiness penalty and processing time in a 25 job problem with
eariiness penalty minimization 147

Figure D.8 Performance comparison of algorithms I & II relative to the ratio of
eariiness penalty and processing time in a 30 job problem with
eariiness penalty minimization 148

Figure D.9 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 15 job problem with the sum of weighted
E/T penalty minimization 149

Figure D.10 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 20 job problem with the sum of weighted
E/T penalty minimization 150

Figure D.11 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 25 job problem with the sum of weighted
E/T penalty minimization 151

Figure D.12 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 30 job problem with the sum of weighted
E/T penalty minimization 152

Figure D.13 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and processing time in a 15 job problem with the
sum of weighted E/T penalty minimization 153

Figure D.14 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and processing time in a 20 job problem with the
sum of weighted E/T penalty minimization 154

Figure D.15 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and processing time in a 25 job problem with the
sum of weighted E/T penalty minimization 155

Figure D.16 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and processing time in a 30 job problem with the
sum of weighted E/T penalty minimization 156

www.manaraa.com

X

Figure D.17 Performance comparison of algorithms III & IV relative to ratio of
tardiness penalty and processing time in a 15 job problem with
the sum of weighted E/T penalty minimization 157

Figure D.18 Performance comparison of algorithms III & IV relative to ratio of
tardiness penalty and processing time in a 20 job problem with
the sum of weighted BT penalty minimization 158

Figure D.I 9 Performance comparison of algorithms III & IV relative to ratio of
tardiness penalty and processing time in a 25 job problem with
the sum of weighted E/T penalty minimization 159

Figure D.20 Performance comparison of algorithms III & IV relative to ratio of
tardiness penalty and processing time in a 30 job problem with
the sum of weighted E/T penalty minimization 160

Figure D.21 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and tardiness penalty in a 15 job problem with
the sum of weighted E/T penalty minimization 161

Figure D.22 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and tardiness penalty in a 20 job problem with
the sum of weighted E/T penalty minimization 162

Figure D.23 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and tardiness penalty in a 25 job problem with
the sum of weighted E/T penalty minimization 163

Figure D.24 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and tardiness penalty in a 30 job problem with
the sum of weighted E/T penalty minimization 164

www.manaraa.com

xi

LISTS OF TABLES

Table 3.1 Numerical example 3.1 33

Table 3.2 Numerical example 3.2 51

Table 4.1 Parameters of product 1 and product 2 in example 4.1 62

Table 4.2 Parameters of products 1, 2 and 3 in example 4.2 76

Table 4.3 Parameters of products 1, 2 and 3 of example 4.3 82

Table 5.1 Comparison of solutions for problems with 10 jobs 91

Table 5.2 Comparison of solutions for problems with 15 jobs 91

Table 5.3 Comparison of solutions for problems with 20 jobs 92

Table 5.4 Comparison of solutions for problems with 25 jobs 92

Table 5.5 Comparison of solutions for problems with 30 jobs 93

Table 5.6 Comparison of solutions for the 10 job problems with optimal
Solutions 94

Table 5.7 Comparison of solutions for the 10 job problems with solutions from
Ow & Morton algorithm 94

Table 5.8 Comparison of solutions for the 15 job problems with optimal
solutions 95

Table 5.9 Comparison of solutions for the 15 job problems with solutions from
Ow & Morton algorithm 95

Table 5.10 Comparison of solutions for the 20 job problems 96

Table 5.11 Comparison of solutions for the 25 job problems 96

Table 5.12 Comparison of solutions for the 30 job problems 97

Table 5.13 Comparison of solutions from algorithm V and optimal solutions 98

Table 5.14 Comparison of solutions from algorithm VI and optimal solutions 100

Table C.I Parameters of example 3.1 120

Table D.I Performance comparison of algorithms I & II relative to the
percentage of conflict in a 15 job problem with eariiness penalty
minimization 141

Table D.2 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 20 job problem with eariiness penalty
minimization 142

www.manaraa.com

xii

Table D.3 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 25 job problem with eariiness penalty
minimization 143

Table D.4 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 30 job problem with eariiness penalty
minimization 144

Table D.5 Performance comparison of algorithms I & II relative to the ratio of
eariiness penalty and processing time in a 15 job problem with
eariiness penalty minimization 145

Table D.6 Performance comparison of algorithms I & II relative to the ratio of
eariiness penalty and processing time in a 20 job problem with
eariiness penalty minimization 146

Table D.7 Performance comparison of algorithms I & II relative to the ratio of
eariiness penalty and processing time in a 25 job problem with
eariiness penalty minimization 147

Table D.8 Performance comparison of algorithms I & II relative to the ratio of
eariiness penalty and processing time in a 30 job problem with
eariiness penalty minimization 148

Table D.9 Performance comparison of algorithms Mi & IV relative to the
percentage of conflict in a 15 job problem with the sum of weighted
E/T penalty minimization 149

Table D.10 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 20 job problem with the sum of weighted
E/T penalty minimization 150

Table D.11 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 25 job problem with the sum of weighted
E/T penalty minimization 151

Table D.12 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 30 job problem with the sum of weighted
E/T penalty minimization 152

Table D.13 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and processing time in a 15 job problem with the
sum of weighted E/T penalty minimization 153

Table D.14 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and processing time in a 20 job problem with the
sum of weighted E/T penalty minimization 154

www.manaraa.com

xiii

Table D.15 Performance comparison of algorithms III & IV relative to the ratio of
earliness penalty and processing time in a 25 job problem with the
sum of weighted E/T penalty minimization 155

Table D.16 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and processing time in a 30 job problem with the
sum of weighted E/T penalty minimization 156

Table D.17 Performance comparison of algorithms III & IV relative to ratio of
tardiness penalty and processing time in a 15 job problem with
the sum of weighted E/T penalty minimization 157

Table D.18 Performance comparison of algorithms III & IV relative to ratio of
tardiness penalty and processing time in a 20 job problem with
the sum of weighted E/T penalty minimization 158

Table D.19 Performance comparison of algorithms III & IV relative to ratio of
tardiness penalty and processing time in a 25 job problem with
the sum of weighted E/T penalty minimization 159

Table D.20 Performance comparison of algorithms III & IV relative to ratio of
tardiness penalty and processing time in a 30 job problem with
the sum of weighted E/T penalty minimization 160

Table D.21 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and tardiness penalty in a 15 job problem with
the sum of weighted E/T penalty minimization 161

Table D.22 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and tardiness penalty in a 20 job problem with
the sum of weighted E/T penalty minimization 162

Table D.23 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and tardiness penalty in a 25 job problem with
the sum of weighted E/T penalty minimization 163

Table D.24 Performance comparison of algorithms III & IV relative to the ratio of
eariiness penalty and tardiness penalty in a 30 job problem with
the sum of weighted E/T penalty minimization 164

www.manaraa.com

xiv

ABSTRACT

In this research, the following four scheduling problems have been studied;

(1) single machine problem with earliness cost minimization, (2) single machine

problem with the sum of the weighted earliness and weighted tardiness cost

minimization, (3) assembly job shop problem with earliness cost minimization, and

(4) assembly job shop problem with the sum of weighted earliness and weighted

tardiness cost minimization. Four mathematical models based on these four

scheduling problems were developed in an effort to obtain optimal solutions. Six

heuristic algorithms have been developed to solve the problems. The performances

of the heuristic algorithms were demonstrated on some sample test problems.

Quality of solutions and CPU time of solutions were the factors of interest. Several

properties of optimal solutions for the single machine scheduling problem with the

objective of minimizing the weighted earliness penalty have been identified In the

research. Algorithms I, III, V, and VI were developed based on these identified

properties while the algorithms II and IV were developed based on the tabu search

concept.

Algorithms I and 11 were developed to solve the first case (1) problem. The

results indicate that these two algorithms are able to produce solutions close to

optimal in small size problems. The results also show that algorithm I is relatively

better than algorithm 11 in large size problem.

Algorithms III and IV were developed to solve the second case (2) problem.

Both algorithms obtained a small average deviation solutions (i.e.. less than 2%)

from optimal in small size test problems. For all problems tested, the algorithm IV is

the best algorithm for solving the eariiness/tardiness problems compared to

algorithm III and the Ow & Morton algorithm.

Algorithm V was developed to solve the third case (3) problem. It obtained an

average deviation solutions less than 1% from the optimal. Algorithm VI was

developed to solve the fourth case (4) problem. Algorithm VI obtained an average

deviation solutions of 2.53% from the optimal.

www.manaraa.com

XV

In testing all developed heuristics, the computational requirements for solving

the problems are less than 2 second in all test problems.

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

In this research, the problem of scheduling jobs in an assembly job shop is

addressed. An assembly job shop refers to a shop that involves both processing

operations and assembly operations. It is assumed that each job has a product

structure of components and subassemblies that assemble together to build up the

end product. Each component or subassembly may need additional processing

before mating with the other parts. The main objective of this research is to develop

an algorithm to minimize the sum of weighted earliness and weighted tardiness for

an assembly job shop problem. Additional to the assembly job shop problem, the

following three other scheduling problems are also addressed in this research:

(1) single machine problem with earliness cost minimization.

(2) single machine problem with the sum of the weighted earliness and

weighted tardiness cost minimization,

(3) assembly job shop problem with earliness cost minimization.

Six heuristic algorithms have been developed to solve the problems.

Algorithms I and II were developed to solve the single machine problem with

earliness cost minimization. Algorithms III and IV were developed to solve the single

machine problem with the sum of the weighted earliness and weighted tardiness

cost minimization. Algorithm V was developed to solve the assembly job shop

problem with earliness cost minimization and Algorithm VI was developed to solve

assembly job shop problem with the sum of weighted earliness and weighted

tardiness cost minimization.

These heuristic algorithms were applied to solve sample problems and the

solutions obtained from the heuristic algorithms are found to compare very favorably

to optimal solutions obtained from mathematical models.

www.manaraa.com

2

1.1 Problem statement

Given an assembly shop and a set of N final products Oobs) with due-dates,

and each job requiring both assembly and processing operations, the objective is to

schedule the jobs through the shop to minimize the sum of weighted earliness and

tardiness penalties. Each product has a product structure consisting of components

and subassemblies that require both machining and assembly operations. Each

operation requires a specific machine from a set of M machines in the shop. There is

an earliness cost for a product completed before its due-date. For assembly

components, the earliness cost may be due to the time spent waiting for the

corresponding mating component. Tardiness cost is incurred if a product is

completed after its due date. The problem is to develop a schedule that minimizes

the overall weighted cost due to both earliness and tardiness penalty.

1.2 Research motivation

Assembly shop is one of typical shops in industrial environment. As in the

review of Nof et al. [30], it states that over 50% of total production time, and 20% of

production cost in manufacturing are related to the assembly of manufactured

products. One-third of a manufacturing company's labor is involved in assembly

work, and 50% of direct labor costs in automotive industry are in assembly shops.

These statistics indicate the importance of the assembly shop in real-worid industry.

They also imply that a good production plan in an assembly job shop may lead to

major cost and production time reduction, which are required in today's highly

competitive environment. Although the importance of assembly shop is significant,

there have been very few reported research that focused on assembly shop

scheduling, in 1994, Ramaudin and Marier [33] reported that no benchmark problem

for the assembly job shop has been published in the scheduling literature. A primary

reason is the complexity of the problem itself. The assembly job shop is more

complicated than the traditional job shop, since it contains the staging delays.

Staging delays are the process in which one part incurs some delays to wait for the

www.manaraa.com

3

arrival of its mating parts. This condition does not exist in traditional job shop

scheduling problems.

With a few published papers on assembly job shop, most of them deal with

such regular measures as mean flow time and completion time. To our knowledge,

no published paper deals exactly with the minimization of eariiness and tardiness

costs (E/T) in an assembly job shop. The E/T criterion is a nonregular performance

measure. It is an NP-complete problem even in the single machine case [6]. Even

though it is not widely studied by researchers when compared to regular measures,

it is, however, considered as one of the important measures in Just in time (JIT)

production systems. In a JIT environment, jobs that finish early must be stored in the

warehouse until their due-dates. This increases the inventory holding cost. On the

other hand, jobs that complete after their due-dates incur tardiness penalties, loss of

customer goodwill, or loss of future sales. It is clearly obvious that both early

completion and tardy completion are undesirable.

Based on the above reasons, assembly job shop scheduling with eariiness

and tardiness cost minimization becomes an interesting problem since it matches

the real problems encountered in industry.

1.3 Research objective

In this research, the problem of minimizing the sum of weighted eariiness and

weighted tardiness costs in an assembly job shop is studied. Because of the

complexity of the problem as mentioned earlier, the optimal solution from exact

algorithm Is likely to require excessive computational time in large size problems.

The development of an exact optimal scheduling algorithm is impractical. This

means that the development of an efficient heuristic algorithm is more practical. In

this research, we propose the use of heuristic technique to search for the best

solution.

In our heuristics, the m machines job shop problem is decomposed into m

separate single machine problems. We simply consider that the schedule of the

assembly job shop is the union of sequences of jobs, with precedence constraints,

www.manaraa.com

4

on each single machine in the shop. Under the proposed solution approach,

heuristic algorithms for E/T single machine problems are first developed. Thereafter,

the algorithms are extended to solve the assembly job shop problem.

Two heuristic algorithms for minimizing weighted earliness cost subject to no

tardy job. and two heuristic algorithms for minimizing the sum of weighted eariiness

and weighted tardiness costs on single machine scheduling are developed In this

research. The first algorithm (minimizing weighted eariiness cost) is based on the

relationship between conflict jobs. Conflict jobs are the jobs whose processing times

overiap each other on the same machine, if each job must be completed on its due-

date. The second algorithm is also for minimizing weighted eariiness cost. It is based

on the tabu search heuristic. The third and fourth algorithms are for minimizing the

sum of weighted eariiness and weighted tardiness penalties. The third algorithm is

the extension of the first heuristic and employs the pairwise interchange method.

The fourth algorithm is a tabu search heuristic.

Two mathematical models for minimizing weighted eariiness, and minimizing

the sum of weighted eariiness and weighted tardiness on a single machine problem

are developed and used to obtain the optimal solutions for small size problems. The

Lindo (Commercial Software) is applied to solve the mathematical models. Heuristic

algorithms are latter developed to solve the more general forms of the problem.

Sample problems are solved and the results of the solutions obtained by the

heuristic and exact procedures are compared

The experience gained in solving the single machine problem was employed

in developing the heuristic algorithms for the general problem of minimizing the

weighted eariiness penalty, and the sum of weighted eariiness and weighted

tardiness penalties in assembly shops involving multiple machines. The

performances of the heuristic algorithms were compared with results obtained from

exact procedure for some small size sample problems.

www.manaraa.com

5

1.4 The assembly job shop environment

Each job in an assembly job shop consists of several components and

subassemblies, with each component or subassembly requiring one or more

operations. The operations can be both processing (machining) and assembly

operations. The operations in an assembly job shop contain both serial and parallel

operations (unlike the non-assembled, traditional, job shop where all operations are

performed in series). For example, the operations of a component are performed

serially, following the precedence relationships, while the operations of the another

component belonging to the same assembly or subassembly are also performed

serially, but in parallel with the former. As a result, scheduling in an assembly job

shop requires the consideration of staging delays which are the delays of a

component waiting for the other components to be mated together. The staging

delay is different from the delays of components waiting for the availability of

machines. The staging delay consideration underlines the complexity of an

assembly job shop problem as compared to the non-assembled job shop.

In this research, a job consists of a set of component parts, and a set of sub

assemblies parts. The components that go into sub-assemblies and the sub

assemblies themselves may require some machining tasks. A task refers to an

operation performed on a job, a component part or a subassembly part at a specific

machine or workstation.

The product structure of a typical assembly product is as shown in Figure 1.1.

The product stnjctures shown are taken from Mckoy and Egbelu [28,29].

Each product is represented as an inverted tree with the root of the tree at the

top. For example, item P/o . for /= 1, 2 in Figure 1.1 is the root node of product /.

There are two sets of nodes in the product structure. The first set of nodes labelled

P,/ represent subassemblies and components. The label P,y is also referred to as the

j-th subjob (assembly or component) of job /. If j - 0, then P/j represents the end

product /, Pij, for j = 0, also represents the final assembly. Thus P/o = P, for all /

and represents the end product /. The final products are constructed by mating the

components and subassemblies in some fashion. The Py nodes in a product tree

www.manaraa.com

6

1034 2022

1022 2013

1014

P21

P.i

1121

1114

1313 1422

p.:

1223

1214

1512 1611

2124

2112

2224

2211

2314

1414

Product 1
Product 2

ijkl Operation required by subjob Py , where k represents
operation number and / is the required machine for k

Subjob j of final job i .

Figure 1.1 Product structure for assembly products

www.manaraa.com

7

are arranged in levels. The levels are labelled sequentially from 0 and counting

upward (1, 2, 3,....) down the tree. For example, in Figure 1.1, there are four levels,

labelled 0, 1, 2 and 3 for product 1. Node Pro is in level 0, while nodes P13 and Pu

are in the second level.

The second set of nodes are represented by four-tuples (Jjkm). These nodes

represent the additional processing operations required by the subjob or P,y node

before the subjob (i.e., Pr,) can be used as an assembly part of its parent node. For

example, Pu may require drilling and milling operations before mating with P12 to

form P10. The four-tuple label (ijkm) in this set of nodes refer to the k-th operation of

subjob j of the final product / where the k-th operation is performed on machine m.

1.5 Problem assumptions

Certain assumptions are made in developing the models in the research.

These assumptions include the following:

a) all jobs are available at time zero,

b) no preemption is allowed,

c) machine breakdown is not considered,

d) jobs have due dates.

1.6 Contribution of the research

Scheduling is one of the most important issues in production system. A good

schedule can result in significant savings both in cost and production time. Even

though a high degree of effort is required in generating a good schedule, the

scheduling problem remains a persistent problem in production system. Poor

schedules are the causes of high work-in-process inventory, job tardiness, and low

machine utilization. The computational time required for generating optimal

schedules for practical size assembly scheduling problems is high. The scheduling

problem of minimizing the total cost due to earliness and tardiness is NP-complete

[6]. Therefore, the use of exact solution procedure in solving large size problems is

impractical. The development of efficient solution methodologies that generate

www.manaraa.com

8

optimal or near-optimal solutions is attractive. Hence, the benefits derived from this

proposed research include:

• The development of heuristic algorithms for minimizing the weighted

earliness penalty in a single machine problem.

• The development of algorithms for minimizing the sum of weighted

earliness and weighted tardiness penalties in a single machine problem.

• The development of a solution methodology for minimizing the weighted

earliness penalty for assembly job shop scheduling problem.

• The development of a general-purpose algorithm for minimizing the sum

of weighted eariiness and weighted tardiness penalties in both the

assembly shop and job shop.

1.7 Organization of the dissertation

The remainder of this dissertation is organized into five chapters. In Chapter

2, the literature related to this research are reviewed. Chapter 3 describes the

model development in single machine problem. It includes the mathematical

models for the problem of minimizing the weighted eariiness penalty in single

machine scheduling and the problem of minimizing the sum of weighted earliness

and weighted tardiness penalties in single machine scheduling. Heuristic algorithms

for minimizing weighted eariiness penalty, and sum of weighted eariiness and

weighted tardiness penalties in single machine scheduling problems are presented.

Chapter 4 describes the model developments in assembly job shop problem. It

includes the mathematical models for the problem of minimizing the weighted

earliness penalty in assembly job shop scheduling and the problem of minimizing

the sum of weighted eariiness and weighted tardiness penalties in assembly job

shop scheduling. Heuristic algorithms for minimizing weighted eariiness penalty,

and sum of weighted eariiness and weighted tardiness penalties in assembly job

shop problems are presented in this chapter.

www.manaraa.com

9

Comparisons between solutions obtained from mathematical models and the

heuristics in both single machine and assembly job shop problems are given in

chapter 5. The conclusion on this research is drawn in the Chapter 6.

The proof of the propositions, the algorithm illustrations, and sensitivity study

are also presented in the Appendices of this dissertation.

www.manaraa.com

10

CHAPTER 2

LITERATURE REVIEW

This chapter reviews previous research work on production scheduling in the

single machine problem, general job shop problem, and the assembly job shop

problem. It focuses on the scheduling methods developed for minimizing earliness

and tardiness costs.

2.1 Single machine problem

The majority of published papers on the scheduling models with earliness and

tardiness (E/T) penalties deals with the single machine model. These papers can be

classified into three groups. The first group deals only with the earliness cost. The

second group focuses on the tardiness cost, and the last group considers both

earliness and tardiness costs at the same time.

2.1.1 Earliness cost model

The allowance for no tardy jobs is the basic assumption in the papers that

deal only with earliness cost. It is assumed that every job must be completed before

or on the due-date, and leave the shop on the due-date. If a job is completed before

its due date, then inventory holding cost is incurred. Chand and Schneeberger [7]

assume that all jobs are available at time zero, and that the due-date for each job is

known. They studied two types of problems which they referred to as the Weighted

Earliness Problem (WE-Problem), and the Constrainted Weighted Earliness Problem

(CWE-Problem). In WE-Problem, machine idle time can be inserted, but it is not

permitted in CWE-Problem. The authors show that both the CWE-Problem and WE-

Problem are NP-hard, and optimal solutions can be obtained by a polynomial time

algorithm in some specified situations. Two heuristics which are modified from

Smith-heuristic [34] are given to solve the CWE-Problem and WE-Problem,

respectively. A dynamic programming procedure was also developed for solving the

www.manaraa.com

11

WE-Problem, but this method was not recommended for solving the problems that

involve larger than 15 jobs. Chhajed [12] introduced a problem where N jobs are to

be scheduled on a single machine and assigned to one of two due-dates which are

given at equal interval. The due-date cost is considered additional to the earliness

cost. The author assumes that customers prefer their jobs to be shipped as early as

possible and thus there is a penalty for assigning jobs a late due-date. The problem

is shown to be NP-hard. A method to obtain lower and upper bounds of the problem

is also provided in the paper. In Asano and Ohta [3], not only is the due-time of each

job known, but also the ready time is prespecified. That is, every job is available for

processing on its ready time and cannot be processed earlier than this time. The

authors propose an optimization algorithm using dominance relation for scheduling

problem. The algorithm is based on the branch and bound approach. This method is

applied to determine the optimal solution so as to minimize the total earliness cost

with respect to the due date of each job. Their dominance relation is determined on

the basis of earliest and latest completion times for unassigned jobs to specify the

antecedent relation for jobs. Using this dominance relation in the branching

operation, the problem size at each node can be reduced as small as possible. The

strong lower bound of the algorithm is achieved by determining the minimum

overlapping time for all unassigned jobs.

Qi and Tu [32] have studied the scheduling of a single machine to minimize

the eariiness penalty subject to no tardy jobs. The due-date in their problem is

determined by the equal slack (SLK) method. Two cases of the problem are studied

in the paper. The first case is the problem with equally weighted monotonous penalty

objective function. The second one is the problem with weighted linear penalty

objective function. For these two cases, two algorithms are respectively proposed by

the authors, and optimal solutions can be obtained within polynomial time.

2.1.2 Tardiness cost model

This type of problem is the opposite of the problem of minimizing eariiness

cost. Only the tardiness cost is considered. A set of jobs with given due-dates is

www.manaraa.com

12

scheduled on a single machine. If a job is completed after its due-date, tardiness

cost is Incurred. Lawler [25] and Lenstra et al. [26] have shown that the weighted

tardiness problem is strongly NP-hard. A pseudopolynomial time algorithm was

developed by Lawler [25] for weighted tardiness problems with agreeable weights.

For example, the weight for / is less than the weight for j when processing time of /

(P/) Is greater than the processing time of j (Pj).

Numerous algorithms involving both exact methods and heuristics have been

developed to solve the weighted tardiness problem. A set of heuristics has been

developed by Fisher [16]. Dynamic programming ([5], [23]) and Branch and bound

algorithm [16] have also been proposed.

Ow and Morton [31] presented a dispatch heuristic for scheduling weighted

tardiness problem. In their dispatch method, whenever there are jobs waiting to be

processed, and the machine is available, a waiting job is selected by using a priority

function. The job that has the highest priority is scheduled next. Szwarc and Liu [39]

have studied the weighted tardiness single machine scheduling problem with

proportional weights. The tardiness penalties are proportional to the processing

times. They present a two-stage decomposition method which is applied to solve the

problem completely or reducing it to a much smaller problem, and then applying

Arkin and Roundy's algorithm [2] to solve the small problem.

2.1.3 Earliness and Tardiness costs (E/T) model

In the review of Baker and Scudder [6], there are various types of

assumptions made for the E/T problem. In some E/T problems, due-date is given,

while In others the due-date is also a decision variable. In cases where due-date is a

decision variable, both the due-date and job sequence are optimized simultaneously.

Some have the same due-date for all jobs, which they call, common due-date, while

others allow distinct due-dates. Some models contain common penalties, while

others permit differences between the eariiness and tardiness penalties or unequal

penalties among the jobs. With so many variations of the E/T model, there have

www.manaraa.com

13

been many papers published in each category. Some of the interesting papers are

reviewed in this research.

In Kanet's paper [22], the problem of minimizing the total unweighted

earliness and tardiness around a single common due-date is studied. The major

assumption made in his work is that the due-date is not early enough to act as a

constraint on the scheduling decision. This assumption is called "unrestrictively late".

Under this assumption, a polynomial time algorithm for finding an optimal solution is

developed and presented by the author. The Kanet's problem is generalized by

Sundaraghavan and Ahmed [36] to scheduling with single machine and several

identical parallel machines. Bagchi, Sullivan and Chang [4] also studied another

generalization of Kanet's problem. They assume that all jobs have equal eariiness

and tardiness penalties. The objective is to minimize the mean absolute deviation of

job completion times about a common due date. Two more problems which are the

generalization of Kanet's problem are considered by Hall and Posner [20], and Hall,

et al. [21]. In [20], each job j has a weight or value wj, which is symmetric, but weight

may not be equal between jobs. All jobs have the same due-date which is

unrestrictively late (the due-date is not early enough to constraint the scheduling

decision). The authors have proved that this problem is NP-complete. They

described optimality conditions, and presented a dynamic programming algorithm,

which is a pseudopolynomial time algorithm. This algorithm can solve the generated

scheduling problem with 2000 jobs within two minutes of CPU time on a

minicomputer. The Hall, et al. [21] paper is the companion paper of [20] but with

some differences in assumptions. In [21], the authors consider the problem of

minimizing the unweighted eariiness and tardiness of jobs with a common due-date

that is eariy enough to constraint the scheduling decision. Similar to [20], the paper

contains a description of several optimality conditions of the problem. The problem

has been proved to be NP-complete in the ordinary sense. Finally, a

pseudopolynomial algorithm based on dynamic programming is proposed. The

algorithm can solve problem of up to 1000 jobs in less than three minutes of CPU

time on a minicomputer.

www.manaraa.com

14

When the E/T model has jobs with different due-dates, it makes the problem

more difficult to determine a minimum cost schedule than the model with common

job due-dates. However, the problem turns out to be simpler, if the due-dates are

also treated as decision variables [6]. The E/T problem on a single machine with

distinct due-dates has been proved to be NP-complete by Garey et al. [19]. Recent

papers dealing with this model (E/T with jobs with distinct due-dates) are classified

into two different categories. In one category, inserted machine idle time is allowed,

while in the other, it is not allowed.

Abul-Razaq and Potts [1] and Ow and Morton [31] in their papers addressed

problems that do not allow insert idle time into schedule. In [1], the paper first

presented a dynamic programming formulation for this problem, but the number of

states required in this formulation is prohibitively large. Branch and bound is then

explored for solving the problem instead. However, the dynamic programming state-

space relaxation technique which is developed by Christofides et al. [13] is used to

obtain a lower bound for the branch and bound approach. In this method, a relaxed

problem is obtained from a dynamic programming formulation by mapping the

original state-space onto a smaller state-space and performing the recursion on this

smaller state-space. Their computational results suggest that the solution time is

large when dealing with problems containing more than 20 jobs. Discussions for

improving the lower bound through the use of penalties and the use of state-space

modifiers are also presented. Ow and Morton [31] propose a dispatch algorithm for

the E/T problem with distinct due-dates, and no inserted machine idle times. In their

dispatch algorithm, the priorities of unscheduled jobs are determined when the

machine becomes available. The highest priority job is selected and schedule next.

Their priority rule is based on the slack time of unscheduled jobs at the moment that

the machine is available, and the value of k, where k is assigned by the scheduler.

Large value of k is recommended, when job due-dates are close together and the

processing time is not very long. On the other hand, when the due-dates are evenly

distributed, k should be small. The authors also presented a new search method,

Filtered Beam Search, which is modified from the Beam Search method used in

www.manaraa.com

15

artificial intelligence. This search method produced very good solutions compared to

their proposed dispatch algorithm.

For problems that allow inserted machine idle time, there have been various

proposed algorithms reported in the literature. Fry et al. [17] present heuristic for the

E/T model with Inserted idle time. Their heuristic has two aspects, the sequencing of

jobs and the insertion of idle time between jobs. The paper shows that the optimal

idle time insertion between jobs can be achieved by solving a linear programming

problem when a sequence is found. For locating the best sequence, a solution

procedure based on the adjacent pairwise interchange (API) method is applied. This

heuristic procedure is used to obtain a local optimal solution. Their computational

results suggest that the solutions from this heuristic are within 2% of the optimal

solutions. A heuristic based on adjacent pairwise interchange is also presented in

Fry et al. [18], but it is used to minimize mean absolute lateness when job due-dates

are not common and all jobs are unweighted. This heuristic is different from the

heuristic of Fry et al. [17], One aspect is that the heuristic procedure of Fry et al. [17]

evaluates only one local optimum as its solution, while the heuristic in Fry et al. [18]

evaluates nine different local optima and selects the best as its solution. The results

from their test problems show that this heuristic performs well, since the solutions

from the heuristic are worse than the optimal solutions by 2.49% on the average.

Another procedure that first locates an initial sequence, and then inserts idle time

optimally into the schedule is presented by Chang and Lee [8]. They present a

greedy heuristic for solving a bicriterion single machine scheduling problem. The

bicriterion includes the minimization of the makespan and the total absolute

deviation. The objective function is the linear combination of these two objectives.

An optimal algorithm and a family of heuristic procedures are developed by

Yano and Kim [41] for minimizing the sum of weighted earliness and weighted

tardiness on a single machine when the weights are proportional to the processing

time of jobs. Branch and bound procedure is applied to find the optimal solution of

the problem. The authors derive some dominance criteria for eliminating some

possible sequences that must not be considered in branch and bound search.

www.manaraa.com

16

These dominance properties are also used as a basis for constructing good initial

solution for some of their heuristics. The heuristic solutions are improved by using

the pairwise interchange method. The results of the tested problems indicate that the

composite heuristic which combines several sorting procedures and a simple

pairwise interchange method is a very good method compared to the solutions from

branch and tx)und.

Davis and Kanet [14] propose an algorithm called TIMETABLER procedure

for optimizing the timing when a sequence is given. The starting times of jobs in a

given sequence are shifted to minimize sum of eariiness and tardiness costs in the

TIMETABLER procedure. Szwarc [38] stated that the arrangement of adjacent jobs

in an optimal schedule depends on a critical value of the start time, if we deal with

E/T model on single machine with job independent penalties. For example, there

exists a single critical value such that / precedes j (/ processing for this pair

starts not eariier than tij and j i if processing begins before t,]. Due to this property,

the branching scheme for the branch and bound procedure is developed. This

scheme significantly reduces the search on 70 test problems containing 10 jobs

each. To handle much larger problems, the authors suggest that this scheme should

be used in any branch and bound procedure along with a good lower bound. Kim

and Yano [24] consider a single machine scheduling problem with the objective of

minimizing the mean tardiness and eariiness when the due-dates are distinct. They

investigate some properties of optimal solutions. Based on these properties, a

branch and bound algorithm and a heuristic are developed for solving the problem.

Problems with 20 jobs can be optimally solved within a modest amount of CPU time

by applying the properties. They observed that less widely dispersed due-dates

leads to excessive computational time in branch and bound algorithm. Thus, the

heuristic should be applied in that situation. Their results also show that some simple

sorting heuristics can produce solutions within 30% of optimal solutions, and this gap

can be reduced by using some simple improvement method such as the pairwise

interchange.

www.manaraa.com

17

A dynamic single machine scheduling problem where the objective is to

minimize the sum of weighted tardiness and weighted earliness costs is considered

by Sridharan and Zhou [35]. They develop a single-pass heuristic based on decision

theory for generating a schedule with embedded idle times, instead of inserting idle

time after constructing a sequence. Their heuristic works as a dispatch procedure. At

each decision point, waiting jobs in the queue plus the jobs that will arrive soon are

considered to determine the next job to be processed and at what time. Chang [9]

proposed a branch and bound approach for single machine scheduling with

unweighted eariiness and unweighted tardiness problem. In this approach, Chang

first constructs an ideal JIT solution in which each job is completed at its due-date. If

overlapping in processing time (i.e. processing conflict) among the jobs does not

exist, the solution is optimal, but it rarely happens in practice. To deal with the

overlapping problem, Chang provides some properties and theorems for eliminating

processing time overiap among the jobs. Based on these properties and theorems, a

bounding scheme for calculating different lower bounds for branch and bound

procedure is presented.

2.2 Job shop with assembly considerations

As stated eariier, research in the deterministic production assembly job shop

has been less extensive than that of typical job shops. One of the major reasons is

that the assembly job shop contains both precedence relations between jobs as well

as operations. It also deals with the staging delay that is the time that a part waits for

the other parts to be mated together.

According to the complexity of the problem, the generation of optimal

schedule requires excessive computational time. It is impractical to solve reasonably

large size problems by using pure optimal scheduling methods. For this reason,

most of researchers dealing with assembly job shop problems focus their efforts on

developing efficient solution algorithms that generate near-optimal solutions with

measurable performances [27].

www.manaraa.com

18

Chen and Wilhelm [10] present a heuristic for kitting problem in multi-echelon

assembly system. The objective is to allocate on-hand stock and anticipate future

deliveries to kits in order to minimize total cost which consists of job easiness, job

tardiness, and in-process holding costs. They describe the kitting problem and

compare the performance of their heuristic with two heuristics that are commonly

used in industry. A decision variable in this problem is the day on which each kit is to

be composed. Their heuristic consists of two stages. The first stage is to determine

the sequence position in the final schedule of each job (single end product). This

procedure is based on the slack time of each job and the earliest dispatching rule.

The second stage is to determine the kitting days of subassemblies of each job

based on the sequence position of jobs from the first stage. The computational

results indicate that this heuristic outperforms the other two heuristics which are

commonly used in industry.

A heuristic algorithm for maximizing the machine utilization in an assembly

job shop subject to satisfying job due-dates is developed by Doctor et al. [15]. Their

heuristic is based on the construction of nondelay schedule. Idle time is allowed only

when inserting idle time improves the performance measure. The heuristic first

selects the operation which creates minimum slack time. The selected operation is

the next to be scheduled on its required machine. However, some idle period may

occur after scheduling the selected operation. Then the heuristic seeks one or more

other operations to fill the imbedded idle time. The results indicate that this heuristic

produces good solutions for the assembly jobs with no more than three levels of

assemblies.

Chen and Wilhelm [11] developed an approach for minimizing the total cost

of allocating resources in multi-echelon assembly system. This kitting problem is the

same problem presented in Chen and Wilhelm [10]. Their optimizing method bases

on the Lagrangian relaxation. It decomposes the problem into subproblems. Several

preprocessing steps are included in this optimizing method. This procedure also

consists of dominance properties to enhance the efficiency of a specialized

branching rule and a dynamic programming algorithm to solve the subproblems. The

www.manaraa.com

19

results show that this approach outperforms OSL, a standard mathematical

programming package.

McKoy and Egbelu [28] propose a heuristic algorithm for minimizing the

production flow time (makespan) in a job shop scheduling problem. They also

constructed a mathematical model for the problem and solved some problem

instances to obtain optimal solution. Heuristic is developed and tested against an

exact solution procedure on some test problems.

McKoy and Egbelu [29] consider the problem of scheduling jobs with both

processing and assembly requirements in a job shop (assembly job shop). The

objective is to minimize the production completion time. Both exact and heuristic

algorithms are developed in this paper. Two production strategies are considered in

the problem. The first strategy is that batches of identical parts generated from the

bill of materials (BOMs) of the various end products are integrated together to form a

supper batch. This strategy benefits from the minimization of the number of machine

setups and machine setup times. In the second strategy, each batch is treated as

individual job, no integration of batches of identical parts was considered. The

performance of the heuristics based on these two strategies are above the optimal

solution by 1.20% on the average. The paper indicates that the first strategy

outperforms the second strategy when the setup times are low. On the other hand,

there is no clear indication that one product strategy is better than the other when

the setup times are moderate to large.

www.manaraa.com

20

CHAPTER 3

MODEL DEVELOPMENT IN SINGLE MACHINE PROBLEM

In this chapter, the solution methodologies for solving the problem of

minimizing weighted earliness penalty, and the sum of weighted earliness and

weighted tardiness penalties in a single machine problem along with their

mathematical models are presented.

3.1 Single machine problem with earliness cost minimization

The basic assumption for this problem is that job tardiness is not allowed.

Only the earliness cost is considered. The problem is to schedule a set of jobs for

minimizing the total weighted earliness cost. Jobs may have different processing

times, distinct due-dates, and unequal weighted earliness cost. This problem is

proved to be NP-hard [7]. The problem was first modeled mathematically. The

mathematical formulation is as given in section 3.1.1.

3.1.1 Problem formulation

The mathematical model of the single machine problem with the objective of

minimizing the weighted earliness penalty is as given below.

Objective function

A/mS(^,*(D,-C,)) (1)
i=l

Subject to

Ci-Si = ti forVi (Processing time constraints) (2)

Ci<Di forVi (No tardy job constraints) (3)

Cj - C, + a(1 - X,j) > tj for Vi,j (Disjunctive constraints) (4)

Ci - Cj aXij > tj for Vi,j (Disjunctive constraints) (5)

Si>0 for Vi (6)

Xij e{0, 1}. integer, for Vi (7)

www.manaraa.com

21

where N = number of jobs,

Si = starting time of job i,

C, = completion time of job i,

ti = processing time of job i,

D, = due-date of job i,

a - large positive number,

E, = eartiness cost of job i (penalty per unit time of eariiness for job i),

^ (1, if job i precedes job j.

'' 10. otherwise.

Constraints (2) express that processing time of a job is equal to the difference

between its starting time and its completion time. Constraints (3) guarantee that

there is no tardy job in the system. Constraints {4J and (5) ensure that no two jobs

can be processed simultaneously. Constraints (6) express that starting time of job i

must be positive. Integrality requirement on Xr, is described in constraint (7).

The presented mathematical model is impractical for solving reasonable size

problem. Therefore, heuristic algorithms are developed for solving problems in this

research. The first heuristic, algorithm I, is developed based on the local optimality

condition (section 3.1.2). The second heuristic, algorithm II, is based on tabu search.

3.1.2. Local optimality condition

In this section, the local optimality conditions between two jobs are described.

Under these conditions, the optimal ordering of any two jobs is derived. A heuristic

for minimizing the weighted eariiness is developed in the next section based on the

derived local optimality conditions.

www.manaraa.com

22

Let /, j denote jobs to be sequenced with processing time t j , due-dates Di,

Dj, and earliness cost per unit t ime, E,. Ej , respectively. If D, > Di and t j > Dj - Di,

then there exists an overlap in processing period between jobs / and j, if both jobs

must be completed on their due-dates (see Fig. 3.1).

j

i

Di Dj

Figure 3.1 Jobs / and j overlap each other, if each completes on
Its due date

Proposition 1. For the case where jobs / and j are not possible to complete

E E •
exactly on their due-dates due to conflict, if — < — and £), < Dj , then the optimal

^ j

non-conflict ordering between jobs / and / is that job / precedes job j (/^) as shown

in Fig. 3.2.

Proof, (see Appendix A).

j

i

Figure 3.2 Illustration of proposition 1

www.manaraa.com

23

Proposition 2. For the case where — > —, D,< Dj, and both jobs / and j

are not possible to complete exactly on their due-dates due to conflict, if

t .E: -t:E:
(D, -Dj) < , then the optimal non-conflict ordering between jobs / and j is

that job / precedes job j (i j) , otherwise j i (see Fig 3.3).

'-+J

Di Dj

Di Dj

Di Dj

Figure 3.3 Illustration of proposition 2

Proof, (see Appendix A).

Proposition 3. For the case where jobs / and j are not possible to complete

exactly on their due-dates due to conflict between jobs /, j and k, where k is already

E E
scheduled, If — < —, then the optimal non-conflict ordering between jobs / and j is

that job / precedes job j.

For example, in Fig. 3.4, suppose another job (i.e. job k) is scheduled for

processing between the time period from B to B* and the due-dates of jobs / and j

are in this time period (i.e. B < D,. Dj <B*). Then jobs / and j can not be processed

www.manaraa.com

24

Ic

J

i
1
1 1
1
1 1

i J 1 >

B B Dj Dj B-Dj D, B*

Figure 3.4 illustration of proposition 3

between B to 8*. If — < —, then the optimal non-conflict ordering is that / j and

the completion time of job j is at time B.

Proof, (see Appendix A).

Proposition 4. Consider the case where job k is already scheduled. Job j is

not possible to complete exactly on its due-date due to conflict between jobs j and /,

and jobs j and k. Job / is not possible to complete exactly on its due-date due to

E E
conflict between jobs / and j (see Fig. 3.5(a)). If — < —, then the optimal non-

conflict ordering between jobs / and j is that job / precedes job j (i -^J).

For example, in Fig 3.5, suppose another job (i.e. job k) is scheduled for

processing between the time period from B to B* and the due-date of job j is in this

time period (i.e. B < Dj <B*). Thus job j can not be processed from time 8 to Dj. On

E E
the other hand, job / has conflict with job j, but not with job k. If ——, then the

t. t :

optimal non-conflict ordering is that / -*• j and the completion time of job j is at time 8.

www.manaraa.com

25

1

k i 1 j k 1
j •

1
1

i

•

1
1

•

1
1

D, B Dj B* Dj B Dj B*

(a) (b)

Figure 3.5 Illustration of proposition 4

Proof (see Appendix A).

Proposition 5. Consider the case where job k is already scheduled. Job j is

not possible to complete exactly on its due-date due to conflict between jobs j and /,

and jobs j and k. Job / is not possible to complete exactly on its due-date due to

E E
conflict between jobs / and i (see Fig. 3.6(a)). If — >— and (D, — D, + T) <

^ 'j

where T is the lenght of time that job j can not be processed until its
(E , + E j)

due-date due to the conflict between jobs j and k, then the optimal non-conflict

ordering between jobs / and j is that job / precedes job j (/ j). On the other hand, if

E E t E —t E
—i- > — and (Di - D; + T) > —-—-, then the optimal non-conflict ordering

t j (E,^E^)

between jobs / and j is that job j precedes job / (j i). This proposition can be

shown as in Fig 3.6.

www.manaraa.com

26

In Figure 3.6, suppose that job k is already scheduled for processing between

the time per iod from 8 to B* and the due-date of job j is In this t ime per iod (i .e . B <Dj

< B*). Therefore job J can not be processed from B to Dj. On the other hand, job /

£ E
has conflict with job j, but not with job k. In this case, 7= D, - 6. If —i- > — and (Di

t E —t E F E
- Dj + T) < -— -— t h e n / j as in Fig. 3.6(b). If — > — and (Di - D; + T) >

t E -t E
, then j i as In Fig. 3.6(c).

Proof, (see Appendix A)

Figure 3.6 Illustration of proposition 5

www.manaraa.com

27

3.1.3 Heuristics for the eariy problem

As stated earlier, single machine problem with earliness cost minimization is

NP-hard [7]. The computation time required for generating optimal schedules from

mathematical programming procedure for practical size problems (i.e. larger than 15

jobs) is high. Thus the mathematical programming procedure is not a practical

approach for solving the problems. The development of efficient heuristics that

generate optimal or near-optimal solutions is attractive.

in this section, two heuristic algorithms are developed. The first one is based

on the local optimality conditions derived in the previous section. The second one is

a tabu search heuristic. In the first algorithm, each job is first scheduled with its

completion time corresponding to its due-date, called ideal solution. If there is no

conflict between jobs, the solution is optimal, otherwise it is an infeasible solution.

Any conflict between a pair of jobs can be eliminated by applying the local optimality

conditions presented in section 3.1.2. The conflict elimination algorithm starts from

the latest conflict where the latest conflict is the conflict of jobs whose due dates are

latter than the other conflict jobs in the system. After the latest conflict is eliminated,

the algorithm moves backward to eliminate the next latest conflict which now

becomes the new latest conflict in the system. The algorithm moves backward until

all conflicts are eliminated. After eliminating all conflicts from the ideal solution,

some imbedded idle periods of machine may occur. The algorithm will search for

better solution by filling any job into the imbedded idle period. The due-date

constraint of the job selected to fill in the machine idle period can not be violated.

After placing a selected job into an imbedded idle period, jobs that are previously

scheduled before the imbedded idle period may no longer be in the best sequence.

For example, suppose the obtained sequence after eliminating all conflicts is

1 and there is an imbedded idle time between jobs 2 and 5. Job 4

can be partially placed in the imbedded period without violating its due-date and the

new sequence now gives a lower cost than the sequence

1 Now the best sequence is 1 ̂ 3-^2-^—>5-^. The sequence of

jobs after job 4 (i.e. 5->6) is still the best sequence based on the propositions, since

www.manaraa.com

28

the order is unchanged. However, the sequence of jobs before job 4 {\.e.1 -^3-^2)

may not be the best sequence based on the propositions, since the sequence is

changed. From this point of view, the schedule may be improved by searching for

the best sequence for jobs 1, 2 and 3 based on the propositions. This can be done

by pegging the sequence of job 4 and the jobs after job 4 (i.e. 4-^5-r*6J, and setting

the jobs before job 4 (i.e. jobs 7, 2, 3) in an ideal schedule (set their completion

times at their due-dates). Then, any conflict between jobs 1,2,3 occurring on the

schedule Is eliminated by conflict elimination procedure again.

In the second algorithm, the initial solution is simply constructed by

scheduling jobs based on their due-dates. The eariiest due-date job is first

scheduled as eariy as possible, then the second eariiest due-date job is scheduled

as soon as the eariiest due-date job is completed, and so on. After all jobs are

scheduled, each job is right shifted in time (i.e. postponed) to its due-dates as close

as possible. The tabu search heuristic is applied to improve the initial sequence. In

each tabu search iteration, all jobs are scheduled as eariy as possible, and then right

shifted in time as in the initial solution. The algorithm is stopped when the stopping

criteria is met.

The following notations are used in both algorithms:

3.1.3.1 Algorithm I development

Input parameters

A/ = Number of jobs.

J = Set of jobs.

/, / e J where /, j = 1,2,3 N.

Ei = Eariiness cost of the job (cost/ unit time).

ti = Processing time of the /"* job.

D, = Due-date of the job.

www.manaraa.com

29

System variables

Z = Total earliness cost.

Z'= Total earliness cost of the current best sequence.

Zmj =Total earliness cost after assigning job j to fill the imbedded idle time interval m.

k = The imbedded idle period on machine {i.e. k = 1,2,3,....).

k'= The k*^ imbedded idle period on machine (i.e. k'=1, 2, 3,) in the current best

sequence.

k^^ = The k^' imbedded idle period of machine (i.e. k-1. 2, 3,) after assigning

job j to fill the imbedded idle interval rrf^.

k = Number of idle time intervals on machine.

k '= Number of idle time intervals on machine in the current best sequence.

k"'' = Number of idle time intervals on machine after assigning job j to fill the

imbedded idle interval m^.

S, = Starting time of the job.

Si - Starting time of the /"* job in the current best sequence.

SI"' =Starting time of the /"job after assigning job j to fill the imbedded idle time

slot m.

C, = Completion time of the ^ job.

C'i = Completion time of the /"job in the current best sequence.

Cp = Completion time of the /" job after assigning job j to fill the imbedded idle

interval m.

TIME = Latest available time on machine.

Ak = (Lk.Uk), the /c'" interval of imbedded idle time on machine (e.g., Ai = (10,20),

implies the first imbedded idle time on the machine occurs in the period

between the 70'"time unit and the 20^ time unit).

A'k = (L'k.U'k), the a'" interval of imbedded idle time on machine in the current best

sequence.

www.manaraa.com

30

the interval of imbedded idle time on machine after assigning job

j to fill the imbedded idle interval m.

U = The beginning time of the imbedded idle time period.

Uk = The end time of the /(^ imbedded idle time period.

a = Set of unscheduled jobs.

;r = Set of scheduled jobs.

(5 = Set of jobs that conflict with job / based on the ideal schedule.

f ik = Set of jobs that are able to fill in Ak (i.e. j e Pk, if y is a job scheduled before

Ak and Dj > Lk). For example, a sequence is 1 -^3-^-^2—>5—>6 and there is an

imbedded idle time between jobs 2 and 5. Thus Lk is at the completion time of

job 2 and Uk is at the starting time of job 5. Let D4> Lk , then job 4 e Pk • Job 4

is able to fill in Ak, the new schedule is 1 -^3-*2->4-^5—>6. In case where U >

Uk- Lk, then it will cause a leftward shift of jobs 1, 3, 2 on the schedule.

Algorithm I:

Step 0. Initialization

Oa. Set k = 0, cr=J, 7t~ <(), TIME = max{D,}.
iea

Ob. For each ie a, set Y) = —.

Step 1. Construct an ideal solution

1 a. For each ie cr, set C, = D,, and S, = C, -1, .

lb If any conflict exists between jobs (i.e. for each ie er. j e a - {i}, Sj<S i<C j

or Sj<Ci<Cj), go to step2, otherwise stop.

Step 2. Let P be the set of jobs ie a with D, > TIME (i.e., P = {Di> TIME, ie a}).

Select job /* where Yr = }. If P = ^, then select job i*, which D,- =

max{D^}. Break ties arbitrarily.
k^a

Step 3. Set C,- = min {TIME, D,'} , S,- = Cr -1,-.

For each j e a - {i*}, if job j conflicts with job /*, set 5i-^ Si- + 0.

www.manaraa.com

31

Step 4. If Yj < Wi-, for all j € Si', go to step 7 (follows propositions 1, 3, 4), otherwise

go to step 5.

Step 5. Select job j*e Si- where D/-= maxlZ)^} and Yi-. Break ties arbitrarily.
keS,.

Step 6. Find the relationship between i* and j* based on local optimality

conditions.

6a. Set Ti' = max { TIME - D,-, 0}.

6b. For Yi' < Yj-, D,- > Dj-. and T,- > 0,

if (Dj' - D,' +Ti') < —hlEjl (follows propositons 2 for 7 = 0, and 5
(^i' ^/*)

for T > 0) , set and go to step 4, otherwise set C,- = D,-,

Si- = Ci' - ti- (i.e., set job /* back to ideal form), i* = y*,^- = <p (i.e.. job j* is

selected to schedule) and go to step 3.

Step 7. Schedule job i* on machine

7a. Check the idle time period. If the completion time of job 1* is not at TIME,

then an imbedded idle time is incurred (i .e. If C,- < TIME, set k - k+1, Lk

= Ci-, and Uk - TIME , Ak = (Lk , Uk)), otherwise there is no imbedded

idle slot recorded by the algorithm.

7b. Set TIME as the starting time of the job that is just scheduled (i.e., set

TIME = Si-).

7c. Delete job /* from the set of unscheduled jobs and add /* to the set of

scheduled jobs (i.e. a-{i*} and k<~ {i*}).

7d.lf all jobs are scheduled (|<t| = 0), then go to step 8, otherwise go back

to step 2.
N

Step 8. Calculate total earliness cost, Z = ^/"E, *max(0 ,Dj -C i)] .
i=1

Step 9. Consider the solution from step 8 as the best solution. Set S) = S,,

Ci' = C, for / e J. Set k' = k, A'm- Am, and 2' = 2.

www.manaraa.com

32

Step 10. Check existing imbedded idle periods. If there is no imbedded idle period

(i.e. k' = 0) in the sequence, then the sequence is the best sequence

obtained by the algorithm and go to step 14, otherwise go to step 11 since

this sequence can be improved.

Step 11. Search for the new lower cost sequence by assigning job to fill existing

imbedded idle time periods. Set the best sequence (i.e. S), C) , and Z") be

the current sequence, called R

Repeat the following steps {11a to l ie) for any existing imbedded idle time

interval, A'm . where m = 1. 2, Start with m = 1 and advance to the

last interval k.

11a. Set as the set of jobs that are scheduled before A'm and are able

to fil l in A'm (i .e. je/3m. where C'j < L'm. and Dj >L'm)-

Explore filling the interval A'm by each job je pm by repeating the

following steps {11b to lie) for each job jePm and starting each time

with sequence R.

11b. Assign joby to fill A'm (i.e. set Cy = min (Dj, U'm), S, = C, - ti). If

starting time of job j after filling in A'm is less than L'm (i.e., the

imbedded idle slot is not enough to fit job y), jobs scheduled

before job j are leftward shifted.

11 c. Reschedule all jobs that are scheduled before job j, since they may

not longer be in the best sequence based on the propositions. Let A

be the jobs scheduled before job j (i .e. A ~ { i / C, < Cj}). Set all ie A

in an ideal forms (i.e. completion time at due-date) and consider all

16 A as the unscheduled jobs by setting a = A. Set TIME = Sy and

repeat step 2 to step 8 for all jobs in a.

N

11 d. Calculate Zmj = * max(O.Dj - C,)], where Zmj is the total

eariiness cost after filling job j into the imbedded idle time A'm-

11 e. Call the sequence obtained by fil l ing pm by job j as S{/3m, j)-

www.manaraa.com

33

Step 12. Select the best sequence SiJJmj') resulting from the exploration sequences

obtained by trying to fill A'm in R by each job je fim (i e. Zmj- - min {Zmj})-
vmj

step 13. If the total cost of the sequence obtained from step 12 is less than the cost

of the current sequence (i.e. Zmj- < Z'), then set the new obtained

sequence as the best sequence (i.e. set Z' = Zmj- . S' = S^''' and C / =

C^'lor all ie J, and k' = k"" ''and = for m = 1.2,...,k') and go to

step 10 otherwise, go to step 14.

Step 14. Output the best sequence determined.

Numerical example 3.1

To illustrate the steps of the algorithm, consider the problem described in

Table 3.1 below. The objective is to minimize the total earliness penalty. A partial

listing of the execution of the algorithmic steps follows. The complete solution

procedure is presented algorithmically in Appendix C.

Table 3.1 Numerical example 3.1
Job 1 2 3 4 5 6 7 8

ti 3 4 9 10 10 5 7 2

D, 80 80 75 66 64 60 50 43

E, 6 4 9 2 3 7 5 1

Y, 2 1 1 0.2 0.3 1.4 0.71 0.

Step 0. Initialization

Oa. Set k=0, a= {1,2,3.4.5.6,7.8}. TIME - 80.

Ob. For each ie a, set Si - Y,- — (i.e.. Y'r=2, Y2=^, >^3=^, Y4=0.2, Y5=0.3,

Y5=0.3, Y6=1.4, Y7=0.71. Y8=0.5).

Step 1. Construct an ideal solution

la. Ci = 80, Si = 77. Ca = 80. Sz - 76. C3 = 75. S3 = 66. C4 = 66. 84 = 56.

www.manaraa.com

34

Cs = 64, Ss = 54, Cg = 60. Sg = 55, C7 = 50, S7 = 43, Cs = 43, Ss = 41

(see Fig. 3.7).

1 b. There are conflicts between jobs. Go to step 2.

Step 2. Select i* =1 (Di= TIME).

50 66 75

4243 S6 66 76

1
•-

54 64

30 40 50 60 70 80 90

Figure 3.7 Ideal solution for example 3.1

Step 3. Set Ci = 80, Si = 77, and Si = {2} (since D2 > Si).

Step 4. Since Yi > Y2 , go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 77. Schedule job 1 at Ci = 80, Si = 77 (see Fig. 3.8).

I
77 80

30 40 50 60 70 80 90

Figure 3.8 Schedule job 1 of example 3.1

www.manaraa.com

35

Step 7c. c7= {2.3.4,5.6.7.8}, ;r= {1}

Step 7d. I cr i 0 go to step 2.

Step 2. Select /* = 2(D2> TIME).

Step 3. Set C2 — 77, S2 — 73, and — {3}

Step 4. Since V2 = V3 , go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 73. Schedule job i* at C2 = 77, S2 = 73 (see Fig. 3.9).

Step 7c. cr= {3.4.5,6,7.8}. ;r=

Step 7d. I <t| 0 go to step 2.

Algorithm is repeated until all jobs are scheduled. The sequence obtained for

example 3.1 is shown in Fig. 3.10

2 1
«—•—•
73 77 80

30 40 50 60 70 80 90

Figure 3.9 Schedule job 2 of example 3.1

www.manaraa.com

36

2 I
• •

26 3638 45 55 60 64 73 77 80

20 30 40 50 60 70 80 90

Figure 3.10 A schedule for example 3.1

After job 4 is scheduled, the problem contains |o| = 0. Then, the algorithm

moves to step 8 for calculating the total weighted earliness cost.

Step 8. Calculate total weighted earliness cost, Z = 147 unit cost.

Step 9. Keep the solution from step 8 as the current best solution by setting

S't = 77, C, = 80, S'2 = 73, C'2 = 77, S'3 = 64, C'3 = 73, S'4 = 26, CU = 36,

S's = 45, C 5 = 55, S'e = 55, C'e = 60, S 7 = 38, C'7 = 45, S'a = 36, C'a = 38,

K- = 1, A'i = (60, 64), Z' = 147.

Step 10. There is an imbedded idle time, A'i = (60, 64), then go to step 11.

Step 11a. Set as the set of jobs that are scheduled before zl'j and are able

to fill in A'i , Pi = {5}.

Step 11b. Assign job 5 to fill A'i = (60, 64). C5 = 64, S5 =54. Since 85 < 60, thus

jobs 6,7,8 and 4 must be leftward shifted.

Step 11c. Set jobs 6,7,8 and 4 in an ideal form, set cr= {4,6,7,8} and set TIME.

= S5 (i.e. 54). The schedule is as shown in Fig.3.11.

www.manaraa.com

37

43 50 56

54

66

2 I
• •

64 73 77 80

4313 55 60

30 40 50 60 70 80 90

Figure 3.11 Assign job 5 to fill in an imbedded idle time period A'i = (60, 64)

Now, the algorithm repeats step 2 to step 8 for rescheduling jobs 4, 6, 7, 8.

The final schedule is as shown in Fig. 3.12. The total cost of final schedule is 130

which is less than the penalty before assigning job 5 to fill in A'i - (60, 64). Since the

new schedule does not contain any imbedded idle period, the algorithm stops and

the new schedule (Fig. 3.12) is the best schedule for example 3.1 obtained by

algorithm I.

4 8 7 6 5 3 2 1
« • • » • • • •
30 40 42 49 54 64 73 77 80

30 40 50 60 70 80 90

Figure 3.12 The best schedule for example 3.1 by algorithm I

www.manaraa.com

38

3.1.3.2 Algorithm II development

The following additional notations and definitions are used in the presentation

of the algorithm.

Definitions

Tabu size: A parameter that designates the number of iterations that a pair of jobs is

forbidden to be swapped.

Aspiration criteria: A criteria that the tabu status is overridden when the swapping

between the declared tabu pair of jobs yields a lower cost that is better

than the lowest cost found so far (i.e., the current best solution).

Input parameters

Imax = Maximum number of iterations allowed in tabu search (stopping criteria).

Hmax =The number of iterations allowed after the current best solution is found

(stopping criteria).

tabu_size = The number of iterations that a pair of jobs is forbidden to be swapped.

System variables

ETIME = Eariiest available time of machine.

Rij = The sequence of jobs after swapping positions between job / and j.

Z(Rij) = Total eariiness cost of the sequence after swapping positions between job /

and j.

Si(Rn) = Starting time of job / in sequence R„.

Ci(Rn) = Completion time of job / in sequence Rn.

y = Set of jobs which have been shifted to the right.

www.manaraa.com

39

Algorithm II (Tabu search)

Phase I Initial solution construction

Step 0. Set a = J , n - 4 > . E T I M E = 0 , T I M E = max{D, }.
iea

Set the tabu_size, nmax. and Imax- Set C, = D, for all / e J.

Step 1. Select i *e crwith the earliest due-date (i.e. Dr <Dj, a) . Break ties

arbitrarily.

Step 2. Schedule /* with Sr = ETIME, C,- = Sr + tr. Set a<-cr- {!*}, tt <- k + {i*}

and ETIME-Ci'.

Step 3. If I cr j 0, go to step 1, otherwise go to step 4.

Step 4. While maintaining feasibility, shift right in time each scheduled job to its due-

date as close as possible.

4a. Set Y = ^. Let P be the set of jobs not yet shifted right in time.

4b. For the last job I (i.e. max{Cy}), if the C, < D/, then shift job / to its due-

date (i.e. Ci = Di, Si = Ci - ti, TIME = S,), set y y + {9 and set

P<-P-{i}, otherwise leave C, , S, unchanged and go to step 5.

4c. For the next latest job / (i.e. max{Cy}), if the C, < D, and C, < TIME, set

Ci = min(Di, TIME), S, = C, - f, .TIME = S,. set y <^y + and P<=- P- {!}.

4d. Repeat step 4c until all jobs either are right shifted or left unchanged.

Go to step 5.
N

Step 5. Calculate total earJiness cost, Z = ^[E, * max(O.Di -CJ7.
i=i

Step 6. Consider the solution from step 5 as the current best solution, by setting

S'i = S,, Ci' = Ci for V/ e J, and setting Z' = Z.

www.manaraa.com

40

Phase II Solution improvement (Tabu search).

Step 7. Consider each job pair i,j where / , i, je J are a candidate pair to be

swapped and place the pairs in a candidate list.

Step 8. Evaluation of all job pairs in the candidate list.

Repeat the following procedure for all candidate pairs i,j. where Rc is the

current sequence.

8a. Swap the positions of job /, yfrom current sequence Rc. to obtain the

new sequence where the Rij is the sequence obtained from swapping

jobs / and j.

8b. Schedule all jobs on Rr, as early as possible (i.e. set the start time of

the first job in R,j at time zero, and the starting time of the next job in % is

at the completion time of the immediate preceding job in , and so on).

If Rij is infeasible (i.e., some jobs are tardy), then discard Rg and go to

step Be.

8c. Employ step 4 to right shift in time each scheduled job in Rg to its due date

as close as possible.

8d. Calculate the total weighted earliness cost Z(Rii) of the R,y.

8e. Swap the jobs /, j back to their original positions to obtain the current

sequence Rc.

Step 9. Select the best pair to be swapped. The sequence R,j that provides the

lowest total weighted earliness cost is selected to be the new sequence Rn-

Step 10. If the new swapping pair is tabu pair and does not satisfy the aspiration

criteria, it is disregarded and eliminated from the candidate list. Go to step

8. If the new swapping pair is not a tabu pair or satisfies the aspiration

criteria, go to step 11.

Step 11 Set Rc = Rn- If the Z(Rn) < Z\ set Z'= ZfRJ, S',{Rc)= S,{Rn),

C',{Rc) = Ci{Rn)^ox V/eJ.

Step 12. Declare the tabu status for the recent swapped pair.

Step 13. Check the stopping criteria.

13a. If the Z'has not decreased for the last n^ax iterations, stop otherwise

www.manaraa.com

41

go to step 13b.

13b. If the maximum number of iterations is met go to step 14, otherwise

go to step 7.

Step 14. Output the best sequence determined.

Numerical example

In this section, the example problem 3.1 is solved using algorithm II. The

algorithmic steps involved in solving the problem are as follows:

Phase I Initial solution construction

Step 0. Set <T= J, K-=- <f>. ETIME = 0, TIME - 80, tabu_size = 3, rimax ~ 5, Imax = 30.

Step 1. Select i* = 8.

Step 2. S8 = 0,Ca = 2.eT= {1,2.3,4,5,6,7} , re ={8} and ETIME = 2.

Step 3. |tT| 0, go back to step 1.

Step 1 to step 3 of the algorithm are repeated until all jobs are scheduled.

After all jobs are scheduled, the schedule of jobs is as shown in Figure 3.13. Next,

the algorithm proceeds to step 4.

Step 4. While maintaining feasibility, shift right in time each scheduled job to its due-

date as close as possible (see Fig. 3.14).

8 7 6

• •-

0 2 9 14 24

4

34

3 2 I

43 47 50

0 10 23 30 40 50 eo

Figure 3.13 Initial solution of example 3.1 (i.e. jobs are scheduled as

early as possible)

www.manaraa.com

42

8 7 6

» • • •-

3032 39 44

5

54

4

64

2 I
-• •—•

73 77 80

10 20 30 40 50 60 70 80

Figure 3.14 Initial solution of example 3.1 after shifting right in time

Step 5. Total earliness cost Z = 244.

Step 6. Consider the solution from step 5 as the current best solution, by setting S'i

= 77, C'r = 80, S'z = 73. C'z = 77. S'3 = 64. C'3 = 73. S4 = 54. C'4 = 64. S'5 =

44. C's = 54. S'E = 39. C'E = 44. S'7 = 32, CV = 39. S'b = 30. C'g = 32, Z' = 244.

Phase II Solution improvement (Tabu search)

Step 7. Generate candidate pair list = {(1.2). (1.3), (1.4). (1.5). (1,6). (1.7). (1,8).

(2.3). (2.4). (2.5). (2.6). (2.7). (2.8). (3.4). (3.5). (3.6). (3.7). (3.8). (4.5). (4.6).

(4.7). (4.8). (5.6).(5.7). (5.8). (6.7). (6.8). (7.8)}

Step 8. Evaluate all job pairs in the candidate list.

8a Current sequence Rc = {8->7-^—^5->4-^3-^2-^1}. Swap the first job

pair in the candidate list (1.2) to obtain the sequence Ri2 =

{8->7-^-^5->4->3-^1 -^2).

8b Schedule all jobs on R12 as early as possible. The schedule is as

shown in Fig.3.15.

www.manaraa.com

43

8c. While maintaining feasibility, shift right in time each scheduled job to its

due-date as dose as possible. The schedule is shown as in Fig. 3.16, and

the algorithm proceeds to step 8d.

8d Total weighted earliness cost Zi2 = 254.

» •
0 2 14 24 34 43 46 50

0 10 20 30 40 50 60

Figure 3.15 Schedule of jobs on R12 (i.e. jobs are scheduled as early
as possible)

8 7 6 5 4 3 1 2

• • • • • • » » •
3032 39 44 54 64 73 76 80

10 20 30 40 50 60 70 80 90

Figure 3.16 Schedule of jobs on R12 after shifting right in time.

www.manaraa.com

44

8e Swap the jobs /, j back to their original positions to obtain the current

sequence Rc, where Rc = {8->7—^->5—>4->3^2-*1}.

The algorithm repeats step 8 for the rest of the job pairs in the candidate list.

Some job pairs are ignored after the algorithm finds that they create infeasible

solutions. Infeasibilty occurs if at least a job is tardy. For example, the swapping of

jobs 1 and 8 produces an infeasible solution. The schedule of Ria =

(1 -^7-^-^5-^->3-*2->8} is infeasible and candidate the pair (1,8) is not

considered in the algorithm, since job 8 is tardy (see Fig. 3.17).

Step 9. Select the best pair to be swapped. The swapping between jobs 4 and 5,

(I.e., (4,5)), provides the lowest cost among the other pairs in the candidate

list, Z(R45) = 232.

Set the new sequence Rn = R45 - {8-*7—>6^^4-*5—^3—^2—^1}.

Step 10. Go to step 11, since the pair (4, 5) does not have tabu status.

Step 11. Set Rc = Rn- Since the Z(R45) < Z', then set Z' = Z(R45)= 232, S', = Si(R45).

C'i = C, (R45) for all /• e J.

Step 12. Declare tabu status for the pair (4,5). Jobs 4 and 5 can not be swapped

in the next three iterations, since the tabu size is three.

Step 13. Since the stopping criteria is not yet met, the algorithm goes back to step 7.

The algorithm continues to iterate until the stopping conditions is met. In this

example, after the stopping criteria is met, the best sequence obtained is

4->8-^7->6^5-^3-^2-^1. This corresponds to the same sequence obtained by

algorithm I (see Fig. 3.12).

www.manaraa.com

45

Tardyjob

8
• •

10 15 25 35 44 48 50

0 10 20 30 40 50 60

Figure 3.17 Job 8 is tardy on

3.2 Single machine problem with sum of the weighted earliness
and weighted tardiness cost minimization

In this section, the no tardy job constraint from the previous section is relaxed.

This makes it possible for jobs to be tardy. The problem is to schedule a set of jobs

to minimize the sum of weighted earliness and weighted tardiness costs. Jobs may

have unequal weighted earliness and weighted tardiness penalties. The problem

was first modeled mathematically. The mathematical formulation is as given in

section 3.2.1

3.2.1 Problem formulation

The mathematical model of the single machine problem with the objective of

minimizing the weighted sum of earliness and tardiness penalties is as given below

Objective function

Min. ^ (£,. • max(0, D, - C,-) + * max(0, C, - D-))
(= 1

This objective function can be transformed to the following function

Min. (1)

www.manaraa.com

46

Subject to

Ci-Si = ti forVi (Processing t ime constraints) (2)

for Vi, j (Disjunctive constraints) (3)

Ci - Cj + aXij > ti for \/ i, j (Disjunctive constraints) (4)

Ai > D, - Ci for V i (5)

B, > Ci - Di for Vi (6)

Ai>0 forVi (7)

Bi>0 for Vi (8)

Si>0 for Vi (9)

Xi jG{0, 1}. integer, forVi (10)

where N = number of jobs,

Si = starting time of job i,

Ci = completion time of job i,

ti = processing time of job i,

Di = due-date of job i,

Ai = the amount of time of job i completed before its due-date (i.e. Ai = Di -Ci).

Bi = the amount of time of job i completed after its due-date (i.e. Bi = Ci- Di) .

a = large positive number,

Ei = earliness cost of job i (cost/unit of time),

Wi = tardiness cost of job i (cost/unit of time),

^ _ j1, if job i precedes job j,

'' [0, otherwise.

Constraints (2) express that processing time of a job equals to the difference

between its starting time and its completion time. Constraints (3) and (4) ensure that

no two jobs can be processed simultaneously. Constraints (5), (6), (7), (8) linearize

the nonlinear objective function of the problem. Constraints (9) express that starting

time of job / must be positive. Integrality requirement on is described in (10).

www.manaraa.com

47

3.2.2 Heuristics for early/tardy problem

As stated earlier, mathematical programming procedure for solving the

earliness/tardiness problem in single machine requires excessive computational time

for solving practical size problems (i.e. more than 15 job problems). Thus the

mathematical programming procedure is not a practical approach for solving the

problem. The development of efficient heuristics that generate optimal or near-

optimal solutions is attractive. Two heuristic solution methodologies, algorithm III and

algorithm IV are developed in this section. Heuristic algorithms III and IV are

respectively the extension of heuristic algorithms I and II developed for minimizing

the eariiness penalties in the previous sections.

Algorithm ill Is extended from algorithm I. It is applied to problems that permit

job tardiness. For example, if a set of jobs can not be scheduled without violating

due-dates of some jobs, then it is impossible to apply algorithm I to such a problem

since algorithm I requires that all jobs must be completed by their due-dates. In other

words, algorithm I is applicable only to problems in which it is feasible to complete all

jobs by their due-dates. Therefore, an algorithm is needed to solve the more

general-purpose problem that involves both eariiness and tardiness in job

completion times. In this research, algorithms III and IV are developed to solve

problems that permit both eariiness and tardiness.

In algorithm III, algorithm I is first employed to build a schedule backward

without allowing for tardiness. However, the solution obtained from algorithm I may

be infeasible (i.e., to complete all jobs by their due-dates, the algorithm could

schedule some jobs to start before time zero). Of course, scheduling of any job

before time zero yields infeasible solution. Shifting the schedule to the right in time to

avoid starting any job before time would imply that some jobs will be tardy. To obtain

a feasible solution, the entire sequence of jobs is shifted right in time until the

starting time of the first job on the sequence is at time zero. Now, a feasible solution

is obtained and some jobs are tardy. At this point, the algorithm starts to search for a

set of jobs that should be tardy jobs by exploring the application of pairwise

interchange method. The job pairs identified to yield the lowest cost after

www.manaraa.com

48

interchanging is selected to be interchanged. The pairwise interchange method is

employed until no more interchanges that can provide lower cost solution is found.

Now a local optima is achieved and the obtained schedule consists of two sets of

jobs, a set of tardy jobs and non-tardy jobs. After interchanging, the obtained

schedule may no longer be the best schedule in terms of earliness cost minimization

point of view, since jobs in the new schedule may not be ordered based on the

propositions presented in section 3.1.2. Thus, the solution may be improved by

applying algorithm I to reschedule all jobs again.

To reapply algorithm I to the schedule obtained from painA^ise interchange,

algorithm I can not be simply employed as before. Algorithm I is based on the due-

date of jobs. For this case, if real due-dates of all jobs are still used in algorithm I,

then algorithm I will always generate an infeasible solution (i.e.. starting time of

some jobs on the sequence may occur before time zero) which is the same as the

infeasible schedule initially generated. To avoid infeasible solution, we need to set

virtual due-dates for some jobs. We know that the schedule obtained from the

pairwise interchange consists of a set of tardy jobs and a set of non-tardy jobs. We

can set virtual due-dates for the tardy jobs at their completion time in the current

schedule (i.e., the completion time on the schedule obtained from pairwise

interchange). In other word, we have agreed to let this set of jobs to be tardy jobs.

For the non- tardy jobs, the due-dates are left unchanged (i.e.. kept the same due

date as contained in the original data). For example, suppose the real due-date of

job /, D,, is 10, but after pairwise interchange, the job / is completed at time 12. We

consider the time 12 as the virtual due-date, D*i. of job /. Based on the virtual due-

dates of the tardy jobs and the real due-dates of non-tardy jobs, a feasible schedule

(i.e..starting time of the first job of the schedule is non-negative value) can be built

by algorithm I.

The new sequence obtained after reapplying algorithm I consists of two set of

jobs, a set tardy jobs and a set of non-tardy jobs. Non-tardy jobs in the new schedule

are now sequenced based on minimizing the earliness cost. If the new schedule

obtained now is different from the schedule before reapplying algorithm I, pairwise

www.manaraa.com

49

interchange method is again used to search for a new improved set of tardy jobs and

then algorithm I is employed to reschedule for minimizing earliness cost of non -

tardy jobs. This algorithm is repeated until the criteria for termination are met.

3.2.2.1 Algorithm III development

The following additional variable and parameter definitions are provided for

algorithm III.

updated_cost: the total cost of the sequence in each iteration.

/c = Iteration count.

The algorithm appears as follows:

Algorithm III

Step 0. Employ algorithm I to generate a solution (i.e. the solution may be infeasible

because the starting time of some jobs on the schedule may be negative

value). Set iteration count /c = f. If the schedule is feasible, consider this

solution as the current best solution, by setting S/ = S,, C/ = C, for /e J, and

setting Z' = Z and set the current sequence, Rc, = the current best solution

and go to step 2. Otherwise go to step 1.

Step 1. Shift right in time the entire sequence until the starting time of the first job is

at time zero. Consider this solution as the current best solution, by setting S /

= S,, C'i = C, for ie J, and setting Z' = Z. Set the current sequence, Rc, = the

current best solution.

Step 2. Consider each job pair i, j where / ;>ij, and /, j e J \n the current best

sequence, Rc. as a candidate pair to be interchanged. Set updated_cost = Z.

Repeat the following procedure for all candidate job pairs /, j (i.e. evaluating

all job pairs in the candidate list).

2a. Interchange the positions of jobs /, J in the current sequence, Rc, to

the new sequence R^ , where R,y is the sequence obtained from

interchanging jobs / and j.

2b. Calculate the sum of total weighted eariiness and weighted tardiness cost

www.manaraa.com

50

Z fRj) =1; [E,-max(O.D, -C,) + W, 'maxtO.C,-D,)J .

2c. Reset the jobs /, j back to their orginal positions in Rc-

Step 3. Select the best job pair to be interchanged. The sequence Rij that provides

the lowest cost is selected to be the new sequence R„.

Step 4. 4a. If Z(Rn) < T, set Z' = Z(Rn), S) - S, (Rn). C, = C, (Rn) for i eJ .

4b. If Z(Rn) < updatedjcost, set Rc = Rn. updated_cost - Z(R„) and delete

the selected pair from the candidate list, and go to step 2 to search for a

new job pairs to interchange to improve the solution.

4c. If no interchange jobs yield lower cost, interchange yields a lower cost

solution, go to step 5.

Step 5. Set /c = /c + 1- Check the stopping criteria. If the maximum number of

iterations is met (i.e. U = Imax), go to step 7. otherwise go to step 6.

Step 6. Re-apply algorithm I to search for a new sequence. The objective of this

step is to reschedule the non-tardy jobs in the schedule obtained from

pairwise interchange to minimize earliness cost, since non-tardy jobs in the

schedule obtained from pairwise interchange may no longer be ordered

based on the propositions in section 3.1.2.

6a. For job j, in Rc (i.e. schedule obtained from pairwise interchange), If its

completion time is greater than its real due-date (i.e., tardiness jobs in

schedule obtained from pairwise interchange), set its virtual due-date as

its completion time (i.e. we agree to let this set of jobs to be tardy jobs).

6b. For job j, in Rc{\.e. schedule obtained from painwise interchange), If its

completion time is not greater than its real due-date (i.e. non-tardy jobs in

schedule obtained from pairwise interchange), leave the due date

unchanged (i.e. we agree to let this set of jobs to be non-tardy jobs).

6c. Repeat algorithm I by using the due-dates obtained from 6a and 6b to

reschedule all jobs to minimize the earliness cost based on the

propositions in section 3.1.2.

6d. Calculate the total cost of the new obtained sequence Rn .

www.manaraa.com

51

6e. If Rc ^ Rn , set Rc = Rn. and updated_cost = Z(Rn) and go to step 2.

Othen/vise (i.e., Rc = Rn) go to step 7.

Step 7. Output the current best sequence Rc based on S'; and C) for all i e J.

Numerical example 3.2

The problem to be scheduled is as given in Table 3.2 below.

Table 3.2 Numerical example 3.2
Job 1 2 3 4 5

_ _ _ _ _ _

El 10 8 5 5 4

W, 17 10 7 10 10

D, 20 20 17 16 10

Step 0. Employ algorithm I to generate an infeasible solution (i.e. starting time of the

some jobs on the schedule is negative value) as in Fig. 3.18. Set iteration

count Ic = 1.

Step 1. Shift right in time the entire schedule until the starting time of job 4 is

at time zero (see Fig 3.19). The new schedule is set to be Rc ={ 4-»5-»2-»3

->1}. At this point, job 1 is tardy. Consider this solution as the current best

solution,S', = 17. C'i = 22, S'2 = 9. C'2 = 14, S'3 = 14. C'3 = 17. S'4 = 0. CU =

6, S 5 = 6, C 5 = 9, and Z' = 131.

4 5 2 3
• •
12 15 -2

•

4
•
7

-•

20

-5 0 5 10 15 20 25

Figure 3.18 An infeasible solution built by algorithm I in example 3.2

www.manaraa.com

52

• • # • • •
0 6 9 14 17 22

0 5 10 15 20 25

Figure 3.19 An initial schedule of example 3.2 (i.e. after right shifted in time)

Step 2.Candidate list of job pairs to be considered for interchange = {(1.2). (1,3),

(1.4). (1,5).(2,3),(2.4).(2.5).(3.4).(3.5).(4.5) }.

Set updated_cost = 131.

Evaluation of all job pairs in the candidate list.

2a. Interchange the position of jobs land 2 in Rc. Job 2 is now tardy.

2b. Calculate the total cost Z(Ri2) = 129.

2c. Reset jobs 1 and 2 back to their previous positions in Rc (i.e., Rc=

{ 4—^5—^2—^ —^V-

Step 2 is repeated for all job pairs in the candidate list.

Step 3. Select pair (1,2) as the best pair to be interchanged, since it provides the

lowest cost compared to the other pairs in the list (see Fig.3.20).

Step 4. Since Z(Ri2) < Z\ set S'^ - 17. C'i = 22. S'2 = 9, C'2 = 14, S'3 = 14. C'3 = 17,

SU = 0, C'4 = 6, S'S = 6, C'S - 9, and Z' = 129.

Since Z(Ri2) < updated_cost, set Rc = R12. updatedjcost - 129 and eliminate

(1,2) from the candidate list and go to step 2.

Step 2. Evaluation of all job pairs Rc in the candidate list.

2a. interchange the position of jobs 1, and 3 in Rc. Job 2 is still tardy.

2b. Calculate the total cost Z(Ri3) = 124.

2c. Reset jobs 1 and 3 back to the previous positions in Rc.

www.manaraa.com

53

14 17 22

0 5 10 15 20 25

Figure 3.20 Schedule after interchanging between jobs 1 and 2 in example 3.2

Step 2 is repeated for all job pairs in the candidate list.

Step 3. Select pair (1,3) as the best pair to be interchanged, since it provides the

lowest cost compared to the other pairs in the list (see Fig. 3.21).

Step 4. Since Z(Ri3) < Z\ set S\ = 12, C'^ = 17, S'z - 17, C'z = 22, S'3 - 9, C'3 = 12,

S4 = 0, C'4 = 6, S's = 6, C5 = 9, andZ' = 124.

Since ZfRijJ < updated_cost, set Rc = R13, updated_cost - 124 and eliminate

(1,3) from the candidate list and go to step 3.

4 5 3 1 2
« • • • » •
0 6 9 12 17 22

0 5 10 15 20 25

Figure 3.21 Schedule after interchanging between jobs 1 and 3 in example 3.2

Step 2. Evaluate all job pairs Rc in the candidate list.

Step 3. Select pair (4,5) as the best pair to be interchanged, since it provides the

lowest cost compared to the other pairs in the list.

Step 4. Since Z(R45) > updatedjcost, go to step 5.

www.manaraa.com

54

Step 5. Set Ic = 2, and since U < Lax (stopping criteria), go to step 6

Step 6. Re-apply algorithm I to search for a new improved sequence.

6b. For job 2, (tardy job), set its virtual due-date as its completion time

{D2 = 22).

6a. For jobs 1,3,4,5 (early jobs), leave their due-dates unchanged.

6c. Repeat algorithm I by using the due-dates obtained from 6a and 6b.

In algorithm I, the ideal solution is as shown in Fig. 3.22.

5 3 2
• • • » •

4 1
• • »

0 5 10 15 20 25

Figure 3.22 Ideal solution for example 3.1 where virtual due-date of job 2 is 22

The solution obtained after the application of algorithm I (see Fig. 3.23) is the

same schedule as the one before applying algorithm I. This means the algorithm met

the stopping criterion, so the algorithm moves to step 7.

Step 7. Output the best sequence = {4->5-^-^1 ̂ 2} with S'i = 12, C'i -17. S'2 =

17, C'z = 22, S'3 = 9. C'3 = 12, S'4 = 0, C'4 = 6, S's = 6, C's = 9, and Z' = 124.

Algorithm IV is a slight modification of algorithm II. There are two differences

between these two algorithms. First, the initial solution of algorithm IV is constructed

using the dispatching rule of Ow and Morton [31]. Second, instead of discarding

candidate pairs that create tardy jobs in step 8b of algorithm II, all candidate pairs

www.manaraa.com

55

4 5 3 2

0
•

6
•

9 12 17
-•

22

0 5 10 15 20 25

Figure 3.23 Final solution for example 3.2 by algorithm III

3.2.2.2 Algorithm IV development

including the ones that produce tardy jobs are considered in step 8b of

algorithm IV. The Ow and Morton dispatching rule is presented in Appendix B.

Algorithm IV (Tabu search for early/tardy problem).

Algorithm IV is the same as algorithm II except for steps 0, and step Bb which

are modified as follows

Step 0. Set a= J, tt- (p. ETIME - 0, TIME - max{D, }.
i^a

Set the tabu_size, n„ax, and Imax-

Set C, = D, for all / J.

Set the initial sequence by the Ow and Mortan algorithm (see Appendix B).

Step 8b Schedule all jobs on Rij as early as possible (i.e.. set the start time of

the first job in R,; at time zero, and the starting time of the next job in is at

the completion time of the immediate preceding job in Rr, and so on).

www.manaraa.com

56

Algorithm IV also provides the same solution as algorithm III for the numerical

example 3.2. From the structure of the algorithms, algorithm IV has a drawback In

that the two major parameters, k {Ow & Morton alg.) and tabujsize, will need to be

specified by scheduler. There are no specific formulas for specifying their initial

values. Guidelines do, however, exist.

www.manaraa.com

57

CHAPTER 4

MODEL DEVELOPMENT IN ASSEMBLY JOB SHOP PROBLEM

In this chapter, the solution methodologies for solving the problem of

minimizing weighted earliness penalty, and the sum of weighted earliness and

weighted tardiness penalties in assembly job shop problem along with their

mathematical models are presented.

4.1 Assembly job shop problem with earliness cost minimization

The basic assumption for this problem is that job tardiness is not allowed.

Only the earliness cost is considered. The problem is to schedule a set of products

with due-dates to minimize the total weighted earliness cost. Each job (product) has

a product structure consisting of components and subassemblies that require both

machining and assembly operations. Each operation requires a specific machine

from a set of M machines in the shop. Operations may have different processing

times. Each product has its own weighted earliness penalty and sub-jobs of products

may have different inventory holding cost. Inventory holding cost for each sub-job

may also be different in each stage of its operation. In other word, earliness cost is

incurred when the final operation of a product is completed before the product's due-

date. Inventory holding cost is incurred, when a sub-job after an operation has to

wait for the next operation. In this research, earliness penalty for a product is

calculated based on the completion time of the final operation of the product while

the inventory holding cost of a sub-job is equivalent to the earliness penalty of an

operation, which is not the final operation. The problem was first modeled

mathematically. An illustrative product structures is as shown in Figure 4.1. The

mathematical formulation is as given in section 4.1.1.

www.manaraa.com

58

lOlI

P..

l i i i

p 12

1213

P:i

2113

:o

2011

P

2212 2312

1312 1412

Product I Product 2

ijkl Operation required by subjob Pij, where k represents
operation and I is the machine used for operation k.

Subjob j of final job i. A subjob is a component or a
subassembly in a product tree or bill of materials.

Figure 4.1. Product structure for assembly products

www.manaraa.com

59

4.1.1 Problem formulation.

The mathematical model of the assembly job shop problem with the objective

of minimizing the weighted earliness penalty is as given below.

Objective function

;V f J. ^
^ ^(iO k'm) * (^i ~ C'(jok-m) ^ ̂ UJ(kfl)m') ~~ ^ Ujkm)))

1 = 1 I 7=0 i = I
(1)

Subject to

C(ijkm) - S(ijkm) = t(ijkm) for V!, j, k (ProcBssing time constraints) (2)

C(iok-m)^Di forVi.j.k (No tardy job constraints) (3)

C(irk-m)-C(ijkm)+a(1 -X(^kmiTk-w)) ^ta-jrm) for Vi,j, k.i'j'.k' (Disjunctive constraints) (4)

C(i jkmj-Caj'k'm) ccX(ijkm,Tk-m) ^t(iikm) for Vi. j.kJ'J'.k' (Disjunctive Constraints) (5)

S(ij(k^i)m-) - C(ijkm) ^0 for vi.j.k (Precedence Constraints) (6)

^(ijkm) ^ 0 for t/ /, j, k (7)

X(ijkmrj-k-m) ^{0, 1}, Integer, for Vi.j.kfj'.k' (8)

where N = number of products,

Di = due-date of product i,

J, = number of sub-jobs in product i.

Kij = number of operations in sub-job (ij),

(ij(k+1)m') = the parent-operation of operation (ijkm),

S(ijkm) = Starting time of operation (ijkm),

C(iok-m) = completion time of the final operation of product i,

C(ijkm) = completion time of operation (ijkm),

t(ijkm) = processing time of operation (ijkm),

a = large positive number.

www.manaraa.com

60

k* = The last operation of an end product,

E(iok-m) = earliness cost of the final operation of product i (cost/unit time).

E(ijkm) = earliness cost of operation (ijkm) (cost/unit time).

f / , i f o p e r a t i o n (i j k m) p r e c e d e s o p e r a t i o n (i ' j ' k ' m) i n m a c h i n e m .

Otherwise.

Constraints (2) express that processing time of an operation is equal to the

dif ference between its start ing t ime and its completion t ime. Constraints (3)

guarantee that there is no tardy job in the system. Constraints (4) and (5) ensure

that no two operations can be processed simultaneously on the same machine.

Constraints (6) are precedence constraints based on the product structure.

Constraints (7) express that the starting time of operation (ijkm) must be positive,

integrality requirement on X(r,knir,-k-m) is described in constraint (8).

Since this problem is NP problem [27], then the presented mathematical

model is impractical for solving reasonable size problem. Therefore, a heuristic

algorithm is developed for solving the problem. A heuristic, called algorithm V, is the

extension of algorithm I, the algorithm based on the local optimality condition for

solving single machine problem with eariiness cost minimization. Algorithm V is

described in section 4.1.2.

4.1.2 Heuristic for assembly job shop problem with the weighted
earliness cost minimization

In solving the assembly job shop problem with weighted eariiness cost

minimization, the computational time required for obtaining optimal solution from

mathematical programming or exact method procedures for practical size problems

Is excessive since the problem is NP [27]. Therefore, mathematical programming

approach is not a practical way for solving the problem. The development of efficient

heuristic that generates optimal or near-optimal solution is practical.

In this section, a heuristic algorithm is developed. The algorithm, called

algorithm V, is the extension of algorithm I. Algorithm V starts with the construction

www.manaraa.com

61

of an ideal solution. An ideal solution is a solution in which the completion times of

the final operations of all products are scheduled to occur or coincide with products'

due-dates. The completion times of all preceding operations are made to coincide

with the starting time of their parent-operations. As in Figure 4.1, assume that the

due-date of product 1 is at the 500 ^ unit time and the processing time of operation

1011 is 100 unit times. The starting time and completion time of operation 1011 in

the ideal solution are at the 40(F and the 50(F* unit times, respectively. The

completion times of the operations 1111 and 1213 are at the 40C^ unit times, which

is the starting time of their parent-operation, operation 1011. Similarly, the

completion times of operations 1312 and 1412 are at the starting time of operation

1111 \n the ideal solution.

If the generated ideal solution is feasible, then the solution is optimal.

However, in the real world, machine conflicts between operations are always present

in ideal solution. Any solution with machine conflicts between operations is

infeasible. To obtain a feasible solution, algorithm V solves the multiple machine

problem as a series of single machine problems. Algorithm V solves the problem

backward. It starts with the unscheduled operation with the latest completion time in

the ideal solution, called the latest operation. If the operation has no machine conflict

with other operations, this operation is scheduled on the machine as it was in the

ideal solution. Otherwise algorithm V will identify a set of ready operations that have

conflict with the latest operation. A ready operation is an unscheduled operation,

which is either the final operation of product or an operation whose successor

operation has already been scheduled. Machine conflicts are resolved based on the

local optimality conditions presented in section 3.1.2. After the conflicts are

eliminated, the previously conflicting operation is marked as scheduled operations.

Next, the algorithm moves backwards to select the new latest unscheduled

operation and the process is repeated until all schedule conflicts in the problem are

eliminated. For illustration, let us consider the following example, called example 4.1.

Assume that products 1 and 2 are to be scheduled. The product structures of

the products are as shown in Fig. 4.1. Due-dates of both products are at the 50(F

www.manaraa.com

62

unit time and the processing times and weighted earliness penalty of the operations

are as shown in Table 4.1.

The ideal solution is constructed as shown in Fig. 4.2. There are three sets of

machine conflict operations. The first set is on machine 1 and it involves operations

2011, 1011, and 1111. The second set is on machine 2 and it consists of operations

2312, 2212, 1312, and 1412. Operations 2113 and 1213 on machine 3 are members

of the third set. Therefore, there are three decomposed single machine problems

that need to be solved at this point.

Table 4.1 Parameters of product 1 and product 2 in example 4.1
Operations Earliness cost of final job and inventory Processing time

holding cost of sub-jobs (E^) {t^)

(unit cost/ unit time) (unit time)

loTi 70 100

1111 40 40

1213 20 50

1312 20 40

1412 20 60

2011 50 140

2113 30 100

2212 30 50

2312 30 120

in algorithm V, the single machine problem containing the operation with the

latest completion time is first solved. For this example, machine one has the

operations with the latest completion times. The machine conflicts of operations in

this set are eliminated by applying the local optimality properties presented in

section 3.1.2. At this point, the new sequence of operations on machine 1 is

2011-^1111-^1011. Then, the new ideal solution is then formed based on the

sequence of operations at machine 1 (see Fig. 4.3). That is, the next ideal solution is

constructed by keeping the sequence on machine 1 unchanged after the conflict

resolution.

www.manaraa.com

63

Now the latest machine conflict is on machine 2. It involves operations 1312

and 1412. Again, the machine conflict between these two operations is eliminated

based on the local optimality properties. The new sequence of operations at

machine 2 is 1412—^1312 (see Fig. 4.4). The new ideal solution is then formed

based on the sequence of operations on machine 2 and machine 1 (see Fig. 4.4).

Finally, the latest conflict is, again, on machine 2 involving operations 2212 and

2312. After eliminating the conflict, the new operation sequence for the last conflict is

2312->2212. The current feasible solution is as shown in Fig. 4.5.

M/C# 1,

2113
-•

M/'C rr 3 260 360 1213
• •
350 400

2312

240 ,,,, 360
WC U 2 * ——•

1412

300 ,,,, 360
• #
320 360

2011

360 nil 1011 soo
• # »

360 400 500

150 250 350 450 550

Figure 4.2 An ideal solution of the example 4.1

www.manaraa.com

64

-WCS 120

2II3 1213
220 350 400

M/'C2 tX)
2312

220
2212

« »
170 220

1412
• •
300 360

1312
• •
320 360

M/C 1 2011 1111 1011

220 360 400 500

80 180 280 380 480

Figure 4.3 An ideal solution of example 4.1 after eliminating the latest conflict

at machine 1

M/C 43
2113 1213

CO 220 350 400

M/C #2

2312 1412 1312

•DO 220 260
2212

« »
170 220

320 360

WCUl
2011 nil loii • •

220 360 400 500

0 100 200 300 400 500

Figure 4.4 An ideal solution of example 4.1 after eliminating the latest conflict

at machine 2

www.manaraa.com

65

M'C
2113 1213

CO 220 350 400

2312
M'C #2

2212
• •

1412 1312
» •

50 170 220 260 320 360

2011 1111 1011
• » • •

#1 220 360 400 500

0 100 200 300 400 500

Figure 4.5 A feasible solution of the example 4.1 after eliminating all machine

conflicts

At this point, the solution obtained may not be the best solution, since the

algorithm solved each decomposed problem independently. The best sequence in a

decomposed problem may not be the best sequence for the entire problem. To

overcome this drawback, a search for improved solution based on the conflict free

schedule of Figure 4.5 is necessary. Algorithm V searches for improved solution by

shifting or moving the moveable operations from one sequence position to another

on a machine without violating schedule feasibility constraints. A movable operation

is an operation that can be moved to a new sequence position from the current

schedule without violating any precedence constraint. For example, in the current

solution of example 4.1 (i.e. Fig. 4.5), operation 2011 can be moved to two new

positions, either starting at time 260 and finishing at time 400, or starting at time 360

and finishing at time 500. In other word, the current schedule "2011 -^1111 ->1011"

on machine 1 can be changed to the schedule "1111-^2011-^1011" or

"1111-^1011-^2011". Assume that operation 2011 is selected to move to new

position (i.e., the position of operation 1111) to make new sequence

www.manaraa.com

66

"1111->2011-^1011". After placing operation 2011 into the new position, other

operations (i.e. 1111,1213, 2312) that preceeded operation 2011 in the

sequence may no longer be in the best sequence. From this point of view, the

schedule may be improved by searching for the best sequence of this set of

operations. This can be done by pegging the sequence of the placed operation and

the operations previously scheduled after the placed operation (i.e. 2011-^1011),

and setting all operations which were scheduled before operation 2011 in an ideal

schedule (see Figure 4.6). Then any machine conflict between operations occumng

on the schedule is eliminated by using the optimaiity conditions as previously

described. This search procedure is performed for all movable operations in the

current schedule. After all movable operations are evaluated, the algonthm selects

the lowest cost solution. If the best solution from the search is better than the current

best solution, set that solution as the current best solution and repeat the search

procedure again. Otherwise the algorithm stops. The entire steps of algorithm V can

be described as in the following section.

2113 1213
M/C #3 • • • •

•BO 260 350 400

2312 . ^1312^

M/C #2 I *0 260 320 360

,2212 , ,1412 ,
21} 260 311 360

M/C#l i

1111
» •

360 400

2011 1011

260 400 500

-50 50 150 250 350 450 550

Figure 4.6 An ideal solution of example 4.1 after changing the schedule of

operation 2011

www.manaraa.com

67

4.1.3 Algorithm V development

Algorithm V employs a fundamental procedure, which is the method for

eliminating machine conflicts in the single machine problem. This procedure is part

of algorithm I presented in section 3.1.3.1. For ease of understanding, the

elimination method is briefly described again in this section.

4.1.3.1 Machine conflict elimination method in single machine
problem (MCE)

The following variables and parameters are used in the algorithm.

Input parameters

J = Set of operations.

E(ijki) = Earliness cost of the operation (ijkt) (cost/unit time).

t(ijki) = Processing time of the operation (ijkl).

y(ijki) - -— •

^(ijki)

D, = Due-date of the product /.

D(ijki) = Due-time of operation (ijkl).

O(ijM) = Operation (ijkl).

System variables

S(ijki) = Starting time of the operation (ijkl).

C(ijki) = Completion time of the operation (ijkl).

a = Set of unscheduled operations.

K - Set of scheduled operations.

5{\]M) - Set of operations that conflict with operation (ijkl)base(i on the ideal schedule.

TIME = Latest available time on machine.

For any machine conflict that exists between operations, do the following

procedure.

www.manaraa.com

68

Step 0. Initialization

Oa. Set cr= J, K- 6, TIME = max

E
Ob. For each 0(rju)e <y, set Sajki) = Yajki) - .

hijU)

Step1. If there are some final operations of products in J, set the due-times of the

final operations to their end-products' due-date {i.e., D(ioii) = D,). For each

O(ijki) €• J, which is not the final operation of products, set its due-time to the

starting time of its parent-operation (i.e., where Oc,i(k-i)n 'S the

parent-operation of O(ijki) in the product structure).

Step2. Let P be the set of operations (ijkl) e cr with D(ijki) ̂ TIME (i.e., P = {D(ijki)>

TIME, 0(,jki)€ <7}). Select Ocijur where Yajuy - P- then

select O(ijki)', that satisfy D(ijki)' = [^ajU)]- Break ties arbitrarily.

Step 3. Set C(,jkiy = min {TIME, D(rikiy}, S(qkiy - C^juy - t(ijkiy-

For each O(ijki) e cr - {0(ijkiy}, if that conflicts with Ofiju)-, set S(ijkiy*- S^ijuy +

{0(ijkj^. If there is no any job conflicts with 0(ijuy, go to step 7.

Step 4. If Y(ijki) <Y(ijkiy, for all Oflju) e S(ijkiy, go to step 7, otherwise go to step 5

in this step, it follows proposition 1, if D(ijkiy > D(ijki) for all 0(ijki) e . It

follows the proposition 3, if 0(ijkiy and some of O(ijki) conflict to a scheduled

operation. It follows the proposition 4, if only 0(ijkiy conflicts to a scheduled

operation and some of 0(ijM) conflict to Ofrjkiy- Therefore, if Y(ijki) < Y(ijkiy , for

all O(ijki) e S(ijkiy , is hold, 0(ijkiy is the best operation to be scheduled in any

environment. The propositions 1, 3, 4 are presented in section 3.1.2

Step 5. Select 0(ijkiy€ S^juy where D(ijkiy is the latest due-time among operations with

Y(ijkiy> Y(ijkiy\n S(ijkiy- Break ties arbitrarily.

Step 6. Find the relationship between 0^,yw;-and based on local optimality

conditions.

6a. Set T = max { TIME - Dfiju)-, 0}.

www.manaraa.com

69

6b. For Y(ijM)' < yfijW' ^C'jwr ̂ ^(Hki)' f and T>0,

if (D(ijuy - D(ijid)' +T) < —^('jidr^ojuy (foUow propositons 2 for
(^djur ^^njuy)

T = 0, and 5 for 7 > 0), set 5(r,kiy<- Sojuy - (0(rjki)} and go to step 4.

Otherwise set Q/yw;- = D(ijid)\ S(ijkj)' = Q/yw;* - f^,ywr (i.e., set 0(ijuy back to

ideal form), set = Oojuy .Sfijur = ^ (i.e., Oajkiy is the selected

operation) and go to step 3.

Step 7. Schedule Oaju)- on machine

7a. Set TIME as the starting time of the , which is the just scheduled

operation (i.e., set TIME - S(iju)').

7b. Delete 0(rjki)' from the set of unscheduled operations and add Ofijur to the

set of scheduled operations (i.e. {O(ijki)'} and ;r ;r + {0(r,ki)'})-

7c. If all operations are scheduled (|(t| = 0), then stop, otherwise go

to step 2.

A step by step demonstration of the MCE algorithm is illustrated in Appendix C.

4.1.3.2 Summary of algorithm V

In this section, a step by step description of algorithm V is presented. This

algorithm includes the MCE method, which was previously presented in section

4.1.3.1 and a search method, which was briefly described in section 4.1.3. The

followlngs are additional notations and definitions used in the presentation of

algorithm V.

System variables

/I; Set of ready operations.

r2(ijki): Set of ready operations, which conflict with 0(iju)-

M : Set of feasible solutions after applying the search method.

www.manaraa.com

70

Definitions

Ready Operation: An unscheduled operation, which is either the final operation of a

product or the operation whose parent-operation was already

scheduled. Backward scheduling is used.

Movable operation: An operation that can be moved to a new sequence position

from the current schedule without violating any precedence

constraint.

Algorithm V

Step 0. Set M = ^. For each operation, set it as an unscheduled operation.

Step 1. Construct an ideal solution.

1a. For each unscheduled operation, if it is the final operation of a product,

set the completion time of the operation at the product's due-date (i.e.,

C(ioii) = Di), otherwise set the completion time of the operation as the

starting time of its parent-operation (i.e., Cfiju) = S(ip(k-i)n, where 0(ij-(k.i)n is

the parent-operation of O(ijki) in the product structure), Sf,yw; = Q,jk/; -

t(ijki), where the schedule is built in a backward manner.

Step 2. Determine machine conflict operation

2a. Let A be the set of unscheduled operations, which are ready operations.

2b. For all O(ijkj) e A, select the operation, Octjuy, with the latest due-time {i.e.,

D(ijkir - Max{D(}jid)}, vO(ijU) e X). Break ties arbitrarily.

2c. If the O(rjki)' has no conflict with both unscheduled and scheduled

operations in ideal solution (note that 0(r]kiy can conflict with some

unscheduled operations in an Ideal solution), schedule Ofijur on the

machine as it was in the ideal solution, set 0(r,ki)' as a scheduled

operation and go to step 4.

If 0(rjki)' conflicts with scheduled operations but has no any conflict with

unscheduled operations, schedule 0(ijM)'OU the machine at the starting

www.manaraa.com

71

time of the earliest scheduled operation (i.e., set Q,ywr at S(rjkir

where VO(ijki) e ;ron machine I), and set Ooiuy as

a scheduled operation and go to step 4.

If Of//>c/r conflicts with unscheduled operations (no matter that

conflicts to scheduled operation or not), place all unscheduled Of,yw; e A,

which conflict with O^y/w;- in , also add operation Ocijuy into Qc,juy

(i.e., set n(ijkir = Ofrjuy + 0(ijki)') and go to step 3. In this step, all

unscheduled operations which conflict to O(ijki)' and 0(ijuy itself must be

carried to step 3 to eliminate machine conflicts by employing MCE

method.

Step 3. Apply MCE method to eliminate machine conflicts of all operations in 0(qki)-,

Select the latest due-date operation of the sequence obtained from MCE

method to schedule and set it as a scheduled operation. Set the remaining

operations in as unscheduled operations and set /2^,ywr = 0, and go to

step 4.

Step 4. If all operations in the problem are scheduled, then go to step 5, otherwise

set all unscheduled operations in an ideal solution while keeping unchanged

the schedule of scheduled operations and go back to step 2.

Step 5. Calculate total earliness cost of the solution obtained in Step 4.

Step 6. Set the current solution obtained from step 4 to be the current best solution,

, called R. Also set R'i <- R.

Step 7. Search for improved solution by evaluating the changing of the

sequence position of movable operations in the current schedule. For each

operation, 0^,7w;',in R, repeat step 7a.

7a. Determine the operations which are scheduled before Ofijuy in R {i.e., all

operations whose Cfyw; and can be moved to the position of

0(ijkiy (i.e., D(ijkj) > S(ijki)M(ijki)). Let Pojuy be the set of operations that can

be moved to take the position of 0(ijuy in R. For each operation

0(ijkir^ P(ijkiy. repeat the following steps (7b-7g).

7b. Remove operation 0(ijkjy irom R and set 0(,jkiy^o be an unscheduled

www.manaraa.com

72

operation.

7c. Let LTIME be the latest available time on machine after removing 0^,kir-

(i.e. LTIME = S(rj-k-i) where 0^,7*7; is the operation scheduled right after

0(ijkiy in R).

7d. Schedule Ofykjy e P(ijkjy Into the previous position of Ofykiy in R. If the due-

time of O(ijki)' is greater than LTIME {i.e., Dfrju}' ^ LTIME), let C(r,ki)- =

LTIME, otherwise set C(rikir— D(jjki). Set = Cpjio)'— t(ijki)' and let 0(^ki)'

be a scheduled operation.

7e. Set all operations, Oc/jw;. except which are previously scheduled

before 0(jjuy in R (i.e., <S(rjkiy) and operation 0^,y«; as unscheduled

operations.

7f. Repeat step1 - step5 to schedule the unscheduled operations and keep

the solution in M.

7g. Reset R^R'i.

Step 8. Select the best solution, R'in M, resulting from the search method in step 7.

Step 9. If the total cost of R' is less than the total cost of R, set R' as the current best

solution (i.e., R = R'), set M - ̂ and return to step 7, otherwise go to step 10.

Step 10. Output the best schedule determined.

A step by step illustration of algorithm V with example 4.1 is given in

Appendix C.

4.2 Assembly job shop problem with the sum of weighted earliness
and tardiness cost minimization

This problem is not significantly different from the problem of minimizing the

weighted earliness penalty, which was presented in section 4.1. The only difference

is that job tardiness is allowed in this problem. Thus, the tardiness cost of products

must be included in the model. The problem is to schedule a set of products to

minimize the sum of weighted earliness and tardiness penalties. Including the

tardiness cost into the model increases the complexity of the problem. The problem

is NP problem [6]. The optimal solutions can be obtained using exact procedures for

www.manaraa.com

73

only small size problems. Therefore, heuristic algorithm is a practical approach to

solving reasonable size problems. In this research, both mathematical and heuristic

approaches are presented.

The problem is first modeled mathematically in section 4.2.1 and the heuristic

algorithm for finding solution to the problem is described in section 4.2.2

4.2.1 Problem formulation

The mathematical model of the assembly job shop problem with the objective

of minimizing the sum of weighted eariiness and tardiness penalties is as given

below.

Objective function

^ ^ (t O k ' m) * ~ C (t O k ' m))) ^ (, O k ' m J ~ ^ t))

J ,

^ ̂ (i j k m) (i j ' (k * !) m ') ^ (t j k m >))

V J = 0 k = l

This objective function can be transformed to the following function

N

Min ^
1=1

Min ̂ * A,) + (W, *B,) +
/=/ V j=0 k=J

(1)

Subject to

C(ijkm) - S(ijkm) = t(ijkw) for Vi.J.k (Processing time constraints) (2)

C(irk-m) - C(ijkm)+a(1 - X(ijkm.iTk-m))^ tajrm) for Vi, j, k,i',j',k'(Disj'unctive constraints) (3)

Cdjkrr,)-Caj-k'm) + aX(ijkmiwm) >t(ijkm) for Vi, j.k.i'.j'M' (Disjunctive Constraints) (4)

S(ij-(k*i)m} - C(ijkm) ^ 0 for vi,j,k (Precedence Constraints) (5)

S(ijkm)>0 forViJ.k (6)

X(ijkmiTk-m) ^ { 0 , 1 } , i n t e g e r . f o r V i j . k . i ' J ' . k ' (7)

A i > Di-C(iOk-m) . forVi (8)

Bj ^ C(iok'm) Di, for \/1 (9)

A i > 0 for Vi (10)

B i > 0 for Vi (11)

www.manaraa.com

74

where N = number of products,

D, = due-date of product i,

J, = number of sub-jobs in product i.

Kij = number of operations in sub-job (ij).

(ij'(k+1)m') = the parent-operation of operation (ijkm),

S(ij-km) = starting time of operation (ijkm),

C(iok-m) - completion time of the final operation of product i.

C(ijkm) = completion time of operation (ijkm),

Ai = the amount of time of the final operation of product i completed before

products's due-date (i.e. Ai = Di-Cowm))-

Bi = the amount of time of the final operation of product i completed after

product's due-date (i.e. Bi = Q,fom; - Di).

t(ijkm) = processing time of operation (ijkm),

a = large positive number,

E(iok-m) = earliness cost of the final operation of product i (cost/unit time).

E(ijkm) = earliness cost of operation (ijkm) (cost/unit time).

if operation (ijkm) precedes operation (i'J'k'm) in machine m,
(ijkmi j km) otherwise.

Constraints (2) express that processing time of an operation is equal to the

difference between its starting time and its completion time. Constraints (3) and (4)

ensure that no two operations can be processed simultaneously on the same

machine. Constraints (5) are precedence constraints based on the product structure.

Constraints (6) express that starting time of operation (ijkl) must be positive.

Integrality requirement on Xajkuj-kv is described in constraint (7). Constraints (8). (9)

(10) and (11) linearize the nonlinear objective function of the problem.

www.manaraa.com

75

4.2.2 Heuristic for assembly job shop problem with the sum of
weighted earliness and tardiness cost minimization

in an assembly product, tardiness cost for an assembly product is incurred

only when the end product is completed beyond its due-date. From this

characteristic, we can consider the tardiness cost of the product on the final

operation of the product. If the final operation of the product is completed beyond the

product's due-date, the tardiness cost is incurred. The tardiness cost is not

considered for the sub-jobs because they are not the final job. For example, in

example 4.1, the tardiness costs are considered for the final operations of sub-jobs

Pro, and P20. with final operations 1011 and 2011, respectively. If operation 1011 is

completed after the due-date of product 1, then tardiness cost is incurred. It is the

same for operation 2011 of product 2. For the other operations, Inventory cost is the

only penalty that can be incurred. Inventory cost is incurred when an operation is

completed and it has to wait for the next operation to begin. In this research,

inventory holding cost is considered as earliness cost of operations, which are not

the final operations.

Based on the above characteristics of the problem, a possible solution

strategy to take is to find a procedure that can identify the appropriate amount of

tardiness for the last operation of each product and integrate the procedure with

heuristic algorithm V, which was presented in section 4.1. In other word, the

algorithm for minimizing earliness cost, algorithm V, should be employed to schedule

the operations, which are not the final operations, after the appropriate amount of

tardiness of each product is set or determined.

The integrated algorithm, called algorithm VI developed for solving the

problem is the extension of algorithm V. In algorithm VI, algorithm V is first applied to

solve the problem. Solutions obtained from Algorithm V may be either infeasible or

feasible. Infeasibility in this case implies that some operations have to start before

time zero to produce at products within their due dates. In the latter case, feasibility

implies all products can be produced to meet their due dates. However, a schedule

that meets the due dates of all jobs does not imply a schedule with minimum cost. It

www.manaraa.com

76

is possible to lower production cost by forcing some jobs to be tardy. Therefore,

algorithm VI should be able to solve both problem cases. Since these two cases can

be studied and solved independently, ones can separately study and develop

procedure for solving each problem case. Later, these two developed methods are

integrated with algorithm V to form algorithm VI, which is an algorithm for minimizing

the sum of weighted earliness and tardiness penalties. These two problem cases are

discussed in sections 4.2.2.1 and 4.2.2.2.

4.2.2.1 The case Involving the realization of an infeasible solution after
employing algorithm V

For this problem case, there are two possible ways to get feasible solution. In

the first approach, the infeasible schedule is right shifted in time without violating any

constraint until feasible solution is obtained. In the second approach, set new due-

date, called virtual due-date, for the final operation of a product. For example,

consider, the product structure shown in Figure 4.7. The processing times, the

earliness costs, and the tardiness costs for each operation are presented in Table

4.2. The actual due-dates for product 1 Is 60, product 2 is 50, and product 3 is 40.

Table 4.2 Parameters of products 1, 2 and 3 in example 4.2
Processing Earliness Tardiness Operation Processing Earliness Tardiness

Operation time Cost Cost time Cost Cost

(unit time) (cost/time) (cost/time) (unit time) (cost/time) (cost/time)

ioTl Ti 20 25 2222 5 6

1111 7 12 - 2213 3 2

1312 5 4 - 3031 10 20 40

1412 5 4 - 3022 8 12

1213 3 4 - 3011 6 10

2021 10 22 35 3112 5 7

2012 7 11 - 3313 3 2

2133 4 7 - 3413 2 1

2122 4 5 - 3221 6 6

2111 2 2 - 3212 2 1

www.manaraa.com

77

Product 1

Product 2

3313

1011

3011

3212

2222

2012

3022

3413

2133

1213

2021

3221

1312

3031

2111

3112

1412 2213 2122

Product 3

Figure 4.7. Product structure for assembly products in examples 4.2-4.3

www.manaraa.com

78

For simplicity, we will refer to the due-dates as "60-50-40". The ideal schedule

and the schedule after employing algorithm V are as shown in Figure 4.8-4.9,

respectively. The solution given in Figure 4.9 is infeasible, since there are some

operations that start in negative time. The negative start time also implies that at

least one product must be tardy to obtain feasible solution. Now, we can set the

virtual due-date of each product by setting it as the actual due-date plus the absolute

value of the earliest non-positive start time of any operation in the infeasible solution.

The earliest non-positive start time is -8 for operation 3413 in Fig. 4.9. By this

concept, three sets of due-dates can be obtained, which are "68-50-40", "60-58-40",

and "60-50-48". For each due-date set, algorithm V is applied to solve the problem.

The due-date set, which provides the best feasible solution is selected. If a feasible

solution cannot be obtained, the method is repeated until feasible solution is

achieved. These two approaches contain some weaknesses. The rightward shift

method depends pretty much on the initial solution (infeasible solution) which was

obtained from algorithm V, but more than one product can be tardy simultaneously.

This will not happen in the virtual due-date method. The virtual due-date method

searches for one tardy product at a time. It is quite possible that a local optimal

solution is obtained in an early stage of the process. The integration of these two

approaches can help to reduce the weaknesses of both. This can be done by

applying the rightward shift method after the virtual due-date method, if the virtual

due-date still provides an infeasible solution. For example, with the virtual due-date

of "60-50-48", the ideal solution is as shown in Figure 4.10 and the schedule after

employing algorithm V is the same as the schedule in Figure 4.9. Although this

solution is infeasible, it will not be discarded. The rightward shift method is applied to

get a feasible solution (see Fig.4.11). This solution is then compared with solutions

obtained from the cases involving the virtual due-date sets "68-50-40" and "60-58-

40". This integration method helps to search for solution more broadly. This reduces

the problem of overlooking potential solutions if the virtual due-date method is used

alone.

www.manaraa.com

MC3
.1413

2213 2133 1213

MC2

MCI

m
Hi

3221

2122 1 1412

1 2222 1312

•iiv~ 2012 1

2111 1111 1011

2021

T-
-5 5 10 15 20 25 30 35 40

Figure 4.8 The ideal solution of example 4.2

-r-
45

1—
50 55 60

3413
MC3| 2213] I 2133 I 1213

(O

MC2 2122 2222 I 2012 I 1412 I 1312

MCI
3221 2111

• 2021 1111 1011

5 10 15 20 25 30 35 40 45 50 55 60
Figure 4.9 The infeasible solution after employing algorithm V in example 4.2

www.manaraa.com

.141.1

I 2213 I 2nr~l I 12131

MC2

MCI

2122 1412

2222 1312

2012 1

2111

T"
5

T-
10

3221
-r-

-5 0 5 10 15 20 25 30 35 40 45 50
Figure 4.10 Ideal solution, for example 4.2, with virtual due-date "60-50-48"

-I—
35

T-
40

I

55 60

3413
MC3 I 2213 I I 2133 I I I2I3|

MC2 2122 I 2222 I 2012 I 1412 I 1312

3221

MCI
2111

• 2021 1111 1011

T-
5 10 15 20 25 30 35 40 45 50 55 60 65

Figure 4.11 A feasible solution after doing rightward shift the schedule In Figure 4.9.
0

-p-
10

-p-
15

T-
30

-I—
35

www.manaraa.com

81

4.2.2.2 The case involving the realization of feasible solution
after employing algorihm V

In this problem case, the schedule obtained from algorithm V is feasible. It

implies that all products can be completed before or on their due-dates. But. this

schedule may not be the best solution. If one forces some products to be tardy, the

total cost could be reduced. This situation occurs, when the due-dates of products

are very tight and the earliness costs of products and sub-jobs are high. Allowing

some products to be tardy may help to relax the tightness of due-dates and

consequently reduce overall cost. To deal with this situation, one needs to find the

critical product from the initial schedule and the amount of tardiness necessary for

the critical product. The critical product is the product that causes the tightness of

the schedule. In other word, the critical product is the product that generates the

highest earliness penalty of the schedule. To identify the critical product, in this

research, products are removed from the schedule one at a time. After removing a

product, the operations of the rest of the products are right shifted in time without

violating any constraints. In this respect, the earliness cost of the existing products

should be reduced. For the removed product, it can be assumed that it is tardy in

the same amount of rightward shift of operations of unremoved products. If the

amount of earliness cost saved by the rightward shift of unremoved products is

larger than the tardiness cost of the removed product, then the removed product is a

candidate product to be tardy.

To obtain a solution, the virtual due-date of the critical product is obtained by

adding the amount of rightward shift to the original due-date. Based on the new

virtual due-date, algorithm V is employed to solve the problem. As an illustration,

consider a problem situation that involves products as Table 4.3 (Example 4.3),

whose product structures are as shown in Figure 4.7. The processing time, earliness

cost, and tardiness cost of each operation are as presented in Table 4.3. The actual

due-dates of product 1 is 70, product 2 is 80 and product 3 is 80. The due-date can

be represented as "70-80-80".

www.manaraa.com

82

Table 4.3 Parameters of products 1, 2 and 3 of example 4.3
Processing Earliness Tardiness Operation Processing Earliness Tardiness

Operation time Cost Cost time Cost Cost
(unit time) (cost/time) (cost/time) (unit time) (cost/time) (cost/time)

1011 10 20 30 2222 7 10 -

1111 8 12 - 2213 3 2 -

1312 3 4 - 3031 10 20 30

1412 3 4 - 3022 9 12 -

1213 5 9 - 3011 6 10 -

2021 10 22 30 3112 4 7 -

2012 9 11 - 3313 3 1 -

2133 6 7 - 3413 3 2 -

2122 5 5 - 3221 6 10 -

2111 4 2 - 3212 4 4 -

The ideal solution and an initial feasible solution obtained from algorithm V

are as shown in Figures 4.12 and 4.13, respectively. Then remove one product at a

time from the Initial schedule. In Figure 4.14, product 3 is removed from Figure 4.13,

and then rightward shift is performed for all the operations of the unremoved

products (i.e., product 1 and 2). There are two stages in doing rightward shift for

products 1 and 2 without violating any constraints. Operations 1011 and 1111 can

be rightward shifted tOtime units (see Fig.4.15). Operations 1312 and 1412 can be

rightward shifted 2 time units without violating any constraints (see Fig. 4.16).

Therefore, we have two possible stages (i.e., shift 2 and 10 unit times) of shifting the

existing schedule of unremoved products. This also means that the possible amount

of tardiness of the removed product (product 3) is either 2 or 10. This concept is

reasonable. Assume that one wants to shift the existing schedule of products 1 and

2 by 10 unit times for saving some earliness costs, then product 3 must be tardy, at

least, by 10 unit times. At this point, one needs to identify the tardiness amount to be

used (i.e., either 2 or 10). The right tardiness amount can be determined by

calculating the cost savings. If one shifts an existing and schedule by 10 unit times,

earliness cost of 145 unit cost can be saved (see Fig. 4.15) and the tardiness cost of

product 3 (i.e., 10 unit times tardiness) is 300 unit cost. Therefore, forcing product 3

www.manaraa.com

Figure 4.12 The ideal solution of example 4.3

MC3 lî liafiti I 2213 I I 2133 I

MC2 2122 I 2222 ~T 2012

MCI 2111 2021

25 30 35 40 45 50 55 60 S 70 75 80

Figure 4.13 An initial feasible solution after employing algorithm V in example 4.3

www.manaraa.com

MC3

MC2

MCI

84

I-1213 I I 2213 I I 2133

»312l 1^121 I 2122 I 222? I

2111 I

2012

I 2021 I

I I I I I I I I I I I
30 35 40 45 50 55 60 65 70 75 80

Figure 4.14 Schedule after removing product 3

MC3

MC2

MCI

22131 I 2133 1

I i3i2 l-W2l 2122 I 2222 I 2012 I

2111 I 2021 1

30 35 40 45 50 55 60 65 70 75 80
Figure 4.15 Schedule after removing product 3 and doing rightward shift

10 unit times for operations 1011 and 1111

MC3

MC2

MCI

2213 2133

I 13^2! t SjilZ I 2122 2222 2012

I 2111 I 2021

30 35 40 45 50 55 60 65 70 75 80
Figure 4.16 Schedule after removing product 3 and doing rightward shift

2 unit times for operations 1312 and 1412

www.manaraa.com

85

to be tardy 10 unit times does not reduce cost, since the tardiness cost is larger than

the earliness cost that can be saved. This process is also applied to force product 3

to be tardy for 2 unit times. It turns out that the tardiness cost is also larger than the

earliness cost that can be saved. Therefore, product 3 is not the critical product.

Forcing product 3 to be a tardy job does not help to reduce the overall cost.

Similarly, the whole process is repeated by removing products 1 and 2. In example

4.3, in all possible cases of removing products 1 and 2 from the initial schedule, it is

found that it is only by removing product 2 from the initial schedule (see Fig. 4.17)

and carrying out rightward shift of existing schedule by 10 unit times (see Fig. 4.18)

can reduction in the overall cost be realized. The earliness cost can be reduced by

502 unit costs and the tardiness cost of product 2 (I.e., 10 unit time tardiness) is 300

unit costs. Therefore, product 2 is a critical product. Forcing product 2 io be tardy by

10 unit times could help to reduce the overall cost. Now, the virtual due-date of

product 2 can be set as 90. With the due-date "70-90-80", then algorithm V is

employed to schedule all operations. The ideal solution and feasible solution for the

due-date '70-90-80" are as shown in Figures 4.19 and 4.20, respectively. If the new

solution is not better than the initial solution, then the algorithm stops. Otherwise, the

new solution is set as the current best solution and the whole process is repeated

again until no more improvement in solution is obtained.

4.2.3 Algorithm VI development

In this section, the step by step description of algorithm VI is presented.

Algorithm VI Is an Integration of algorithm V and the methods previously mentioned

In sections 4.2.2.1 and 4.2.2.2. The followings are additional notations and

definitions used in the presentation of algorithm VI.

System variables

M: Set of feasible solutions.

B: Set of all operations.

Pi: Set of possible tardiness amount for product /.

www.manaraa.com

86

MC3

MC2

MCI

I ̂ 2^3 I

I 13l2t:T4li^

-1—
35 40 45 50 55 60 65 70 25 30

Figure 4.17 Schedule after removing product 2

MC3

MC2

MCI

IteiatH

13121 i4lil

nil lOIT

-T—
30

—r-
35

-T—
40

—r—
45

"T"
50

-1—
55

—1—
60

—r-
65

—t—
70 75 80

Figure 4.18 Schedule after removing product 2 and doing rightward shift
of 10 unit times

www.manaraa.com

I I I I I I I I I I I I I

30 35 40 45 50 55 60 65 70 75 80 85 90
Figure 4.19 Ideal solution, for example 4.3, with virtual due-date" 70-90-80" ^

MC3 l!iT'gi'2iS Î;l I 22131 I 2133 I

MC2 2122 I 2222 | 2012

MCI 2111 2021

I I I I I I . I I I I I I
30 35 40 45 50 55 60 65 70 75 80 85 90

Figure 4.20 A feasible solution of the problem with virtual due-date "70-90-80"

www.manaraa.com

88

Algorithm VI

Step 0. Set M = ̂ and P, = ^for all /.

Step 1. Employ algorithm V to construct an initial schedule, called schedule R

Step 2. Check feasibility of R. If R is a feasible solution (i.e., Sf,yw; > 0, VOpju)), go to

step 7. Otherwise go to step 3.

Step 3. While maintaining precedence relationship between operations, do rightward

shift in R until feasible solution is obtained (i.e., S(^ki) ^ 0, VO(,ji(i)). Keep this

solution as a feasible solution in M, where M \s a set of feasible schedules.

Set schedule back to R.

Step 4. Determine the eariiest starting time of all operations B in R (i.e., S(ijki)'

< min 1), where 8 is the set of all operations in R. In this step, Sfm' ^0.
OUjkD^B^ '''J""

Let G be the appropriate amount of tardiness. Set 6 = \S(ijki)'\ •

Step 5. For each product /, set the virtual due-date of the product equal to the actual

due-date plus the appropriate amount of tardiness (i.e., virtual due-date

of product /= Di+ G). and repeat the following steps (5a-5c).

5a. Based on the virtual due-date of product / and the actual due-dates of the

other products, employ algorithm V to schedule the operations.

5b. If a feasible solution (i.e.. > 0, for VOf/ywj) is obtained, place this

solution in M. Otherwise do rightward shift operations until feasible

solution is achieved (\.e.,S(ijid) ^0, for VO^,yw;) and place this solution as a

feasible solution in M,

5c. Reset the schedule back to R.

Step 6. Select the best solution in M, called R'. and set R = R'.

Step 7. Set M = ({>. For each product / in R, do the following steps (7a-7d).

7a. Remove all operations of product / from R.

7b. Let R* be the schedule after removing product / from R. For each

operation in R*, do the steps (7b(1)-7b(2)).

7b(1). Shift 0(ijkiy to the right without violating precedence constraint.

www.manaraa.com

89

Let Q(rjkiy be the amount that Ofywrcan be shifted to the right in time.

If Q(rikiy ^ 0, place Qojuy in P, where P, is the set of possible tardiness

amount of product /.

7b(2). Set the schedule back to R*.

7c. Let Pi(a) be a member of P,. For each Pi(a) , do the following steps.

7c(1). Set virtual due-date of product / equal to the due-date of

product / in R plus Pi(a) (i.e., D(iinR) + Pi(a)).

7c(2). Based on the new virtual due-date of product / from 7c(1) and

the due-dates of the other products in R , employ algorithm V to

construct a new schedule for all the operations. Place the solution

in set M.

7d. Reset the schedule back to R.

Step 8. Select the best solution in M, called R'. If R' is better than R, set R = R', set

M = (^ and return to step 7, otherwise stop.

A step by step presentation of algorithm V with example 4.2 is illustrated in

Appendix C.

www.manaraa.com

90

CHAPTER 5

HEURISTIC COMPARISON

In this chapter, the six developed heuristic algorithms are tested and

compared to optimal solutions obtained by using exact solution procedure for some

sample test problems. In the single machine problem, algorithm I and algorithm II

are also compared with each other for the case of weighted earliness cost

minimization. Comparisons between algorithms III, IV and the Ow & Morton

dispatching algorithm [31] are also performed for the case of minimizing the sum of

weighted earliness and weighted tardiness cost.

5.1 Heuristic comparison in single machine problem

5.1.1 Single machine problem with earliness cost minimization

Algorithms I and II were applied to 75 test problems. The problem sizes

varied from 10 to 30 jobs. The processing times, the due-dates, and the weighted

earliness penalty per unit time for each job were randomly generated. The results

from both algorithms were also compared with the optimal solutions for the problem

cases involving 10 jobs, and 15 jobs. The optimal solutions were obtained by

applying the LINDO commercial software to solve the equivalent mathematical

models on a PC with Pentium II processor and running at 233 MHz. In this research,

if the optimal solution cannot be obtained within 2 hours by LINDO, the problem is

aborted. Aborted test problems had no optimal solution to report and were instead

marked as being nonapplicable (N/A) on the comparison table.

Of the 75 test problems examined, 19 were solved to optimality within two

hours using mathematical programming approach (see Table 5.1-5.2). Algorithm II

also found the optimal solutions for all the 19 problems, while heuristic algorithm I

found the optimal solutions for 18 problems. For the remainder of the problems,

exact solution procedure was no longer used because of the increasing problem

sizes. However, the two algorithms were used in solving the problem. The results

obtained are shown in Tables 5.3-5.5. From the results given, it was found that

algorithm I outperformed algorithm II. The quality of the solutions from algorithm I

www.manaraa.com

91

Table 5.1 Comparison of solutions for problems with 10 jobs
Pro.# Opt. Sol. Alg. 1 Sol. Alg. II Sol. %dev %dev %dev CPU CPU CPU

(Unit Cost) (unit cost) (unit cost) ofB of C ofC time (A) time time
(A) (B) (C) from A from A from B (sec.) (B)

(sec.)
(C)

(sec.)
1 81 81 81 0 0 0 6 <1 <1
2 286 293 286 2.44 0 -2.44 4 <1 <1
3 112 112 112 0 0 0 3 <1 <1
4 83 83 83 0 0 0 13 <1 <1
5 97 97 97 0 0 0 11 <1 <1
6 299 299 299 0 0 0 43 <1 <1
7 64 64 64 0 0 0 4 <1 <1
8 186 186 186 0 0 0 8 <1 <1
9 421 421 421 0 0 0 139 <1 <1
10 271 271 271 0 0 0 8 <1 <1
11 405 405 405 0 0 0 53 <1 <1
12 121 121 121 0 0 0 4 <1 <1
13 229 229 229 0 0 0 6 <1 <1
14 225 225 225 0 0 0 13 <1 <1
15 208 208 208 0 0 0 39 <1 <1

Average of % deviation 0.16 0 -0.16
Standard deviation of % deviation 0.63 0 0.63

Table 5.2 Comparison of solutions for problems with 15 jobs
Pro. # Opt. Sol. Alg. I Sol. Alg. II Sol. %dev %dev %dev CPU CPU CPU

(Unit Cost) (unit cost) (unit cost) of B of C of C Time (A) time time
(A) (B) (C) from A from A from B (sec.) (B)

(sec.)
(C)

(sec.)
1 N/A 1219 1251 N/A N/A 2.63 >2hr. <1 <1
2 N/A 762 762 N/A N/A 0.00 >2hr. <1 <1
3 135 135 135 0 0 0.00 105 <1 <1
4 406 406 406 0 0 0.00 2hr. Imin. <1 <1
5 N/A 852 880 N/A N/A 3.29 >2hr. <1 <1
6 N/A 581 581 N/A N/A 0.00 > 2hr. <1 <1
7 N/A 1041 1041 N/A N/A 0.00 > 2hr. <1 <1
8 226 226 226 0 0 0.00 1090 <1 <1
9 153 153 153 0 0 0.00 364 <1 <1

10 N/A 197 202 N/A N/A 2.54 >2hr. <1 <1
11 N/A 540 545 N/A N/A 0.93 >2hr. <1 <1
12 N/A 1033 1033 N/A N/A 0.00 >2hr. <1 <1
13 N/A 218 225 N/A N/A 3.21 >2hr. <1 <1
14 N/A 286 283 N/A N/A -1.05 >2hr. <1 <1
15 N/A 313 313 N/A N/A 0.00 >2hr. <1 <1

Average of % deviation 0.77
Standard deviation of % deviation 1.40

- N/A ; the optimal solution could not be obtained within 2 hours.

www.manaraa.com

92

Table 5.3 Comparison of solutions for problems with 20 jobs
Pro.# Aig. 1 Sol. Aig. II Sol. % deviation Algorithm 1 Algorithmll

(unit cost) (unit cost) of Aig II from Aig 1 CPU time CPU time
(sec.) (sec.)

1 917 925 0.87 <1 <1
2 762 762 0.00 <1 <1
3 135 135 0.00 <1 <1
4 406 406 0.00 <1 <1
5 852 880 3.29 <1 <1
6 581 581 0.00 <1 <1
7 1041 1041 0.00 <1 <1
8 226 226 0.00 <1 <1
9 153 153 0.00 <1 <1

10 197 202 2.54 <1 <1
11 540 545 0.93 <1 <1
12 1033 1033 0.00 <1 <1
13 218 225 3.21 <1 <1
14 286 283 -1.05 <1 <1
15 313 313 0.00 <1 <1

Average of % deviation 0.65
Standard deviation of % 1.30

deviation
- Algoritlim I is better than algorithm II by 0.65 % on the average with standard deviation of 1.30.

Table 5.4 Comparison of solutions for problems with 25 jobs
Pro. # Aig. 1 Sol. Aig. II Sol. % deviation Algorithm 1 Algorithmll

(unit cost) (unit cost) of Aig II from Aig 1 CPU time CPU time
(sec.) (sec.)

1 929 917 -1.29 <2 <2
2 1278 1278 0.00 <2 <2
3 756 752 -0.53 <2 <2
4 1112 1078 -3.06 <2 <2
5 512 532 3.91 <2 <2
6 980 1120 14.29 <2 <2
7 2630 2759 4.90 <2 <2
8 2284 2369 3.72 <2 <2
9 2033 2230 9.69 <2 <2

10 1745 1675 -4.01 <2 <2
11 1207 1207 0.00 <2 <2
12 1477 1547 4.74 <2 <2
13 1484 1499 1.01 <2 <2
14 1479 1461 -1.22 <2 <2
15 2144 2106 -1.77 <2 <2

Average of % deviation 2.03
Standard deviation of % 4.80

deviation
- Algorithm I is better than the algorithm II by 2.03% on the average with standard deviation of 4.8.

www.manaraa.com

93

Table 5.5 Comparison of solutions for problems with 30 jobs
Pro. # Alg. 1 Sol. Alg. II Sol. % deviation Algorithm 1 Algorithmll

(unit cost) (unit cost) of AJg II from CPU time CPU time
Alg 1 (sec.) (sec.)

1 1750 1737 -0.74 <2 <2
2 3005 3001 -0.13 <2 <2
3 707 707 0.00 <2 <2
4 626 626 0.00 <2 <2
5 1282 1282 0.00 <2 <2
6 1158 1264 9.15 <2 <2
7 985 1044 5.99 <2 <2
8 1241 1237 -0.32 <2 <2
9 454 454 0.00 <2 <2
10 1371 1557 13.57 <2 <2
11 1870 1868 -0.11 <2 <2
12 5171 5167 -0.08 <2 <2
13 2182 2386 9.35 <2 <2
14 2892 2997 3.63 <2 <2
15 1284 1284 0.00 <2 <2

Average of % deviation 2.69
Standard deviation of %dev. 4.45
- algorithm I is better than the algorithm II by 2.69% on the average with standard deviation of 4.45.

are better than those obtained by algorithm II by approximately 1.09%. In all cases, it

took less than 2 seconds of computational time to solve the problems by each of the

two algorithms. The sensitivity analysis of the problem is presented in Appendix D.

5.1.2 Single machine problem with sum of the weighted earliness
and weighted tardiness cost minimization

Algorithms III and algorithm IV were employed to solve 75 test problems. The

problem sizes varied from 10 to 30 jobs. The processing times, the due-dates, the

earliness, and the tardiness penalties for each job are randomly generated. The

results from both algorithms are compared with the optimal solutions obtained for the

cases involving 10 and 15 job problems. The optimal solutions are obtained by

applying the LINDO commercial software to solve the equivalent mathematical

models on a PC with Pentium II processor and running at 233 MHz. In this research.

If the optimal solutions can not be obtained within 2 hours by LINDO, the model is

aborted and no solution is reported for comparison. Aborted cases are denoted as

N/A on the comparison tables. The solutions from both algorithms are also

compared with the Ow & Morton's dispatch algorithm. The results of the

comparisons are given in Tables 5.6 through 5.12. The sensitivity analysis of the

problem is presented in Appendix D.

www.manaraa.com

94

Table 5.6 Comparison of solutions for the 10 job problems with optimal
solutions

Pro. # Optimal Alg. Ill Alg. IV %dev %dev. %dev CPU CPU CPU
Sol. Sol. Sol. o fB o fC OfB time (A) time Time

(Unit Cost) (unit cost) (unit cost) from A from A fromC (sec.) (B) (C)
(A) (B) (C) (sec.) (sec.)

1 178 178 183 0 2.8 -2.73 952 <1 <1
2 80 80 80 0 0 0.00 39 <1 <1
3 76 77 77 1.3 1.3 0.00 45 <1 <1
4 171 177 171 3.5 0 3.51 50 <1 <1
5 249 249 249 0 0 0.00 408 <1 <1
6 77 77 77 0 0 0.00 65 <1 <1
7 247 260 260 5.3 5.3 0.00 574 <1 <1
8 142 153 153 7.7 7.7 0.00 346 <1 <1
9 240 243 240 1.2 0 1.25 237 <1 <1
10 178 178 178 0 0 0.00 444 <1 <1
11 162 167 165 3 1.8 1.21 468 <1 <1
12 89 89 89 0 0 0.00 247 <1 <1
13 234 234 234 0 0 0.00 234 <1 <1
14 375 375 375 0 0 0.00 773 <1 <1
15 N/A 669 669 N/A N/A 0.00 >2hr. <1 <1

Average of % deviation 1.57 1.35 0.22
Standard deviation of % deviation 2.44 2.40 1.26

N/A: The optimal solution can not tse obtained within 2 hours.
- Algorithm III obtains on average deviation of 1.57% from the optimal with standard deviation of 2.44.
- Algorithm IV obtains on average deviation of 1.35% from the optimal with standard deviation of 2.40.
- Algorithm IV is better than the algorithm 111 by 0.22% on the average with standard deviation of 1.26.

Table 5.7 Comparison of solutions for the 10 job problems with solutions from
Ow & Morton algorithm

Pro. # O&M Alg. Alg. Ill Alg. IV %dev. %dev. %dev. CPU CPU CPU
Sol. Sol. Sol. o fD OfD OfB time (D) time Time

(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C)
(D) (B) (C) B C C (sec.) (sec.)

1 216 178 183 21.35 18.03 -2.73 <1 <1 <1
2 110 80 80 37.50 37.50 0.00 <1 <1 <1
3 81 77 77 5.19 5.19 0.00 <1 <1 <1
4 184 177 171 3.95 7.60 3.51 <1 <1 <1
5 274 249 249 10.04 10.04 0.00 <1 <1 <1
6 95 77 77 23.38 23.38 0.00 <1 <1 <1
7 265 260 260 1.92 1.92 0.00 <1 <1 <1
8 168 153 153 9.80 9.80 0.00 <1 <1 <1
9 309 243 240 27.16 28.75 1.25 <1 <1 <1
10 244 178 178 37.08 37.08 0.00 <1 <1 <1
11 192 167 165 14.97 16.36 1.21 <1 <1 <1
12 107 89 89 20.22 20.22 0.00 <1 <1 <1
13 238 234 234 1.71 1.71 0.00 <1 <1 <1
14 400 375 375 6.67 6.67 0.00 <1 <1 <1
15 823 669 669 23.02 23.02 0.00 <1 <1 <1

Average of % deviation 16.26 16.49 0.22
Standard deviation of % deviation 11.97 11.78 1.26

- Algorithm III is better than the O & M algorithm by 16.29% on the average with standard deviation of 11.97.
- Algorithm IV is better than the O & M algorithm by 16.49% on the average with standard deviation of 11.78.

www.manaraa.com

95

Table 5.8 Comparison of solutions for the 15 job problems with optimal
solutions

Pro. # Optimal /^g. Ill Alg. IV %dev %dev. %dev CPU CPU CPU
Sol. Sol. Sol. o fB o fC OfB time (A) time time

(Unit Cost) (unit cost) (unit cost) from A from A fromC (sec.) (B) (C)
(A) (B) (C) (sec.) (sec.)

1 202 202 202 0 0 0.00 32 min. <1 <1
2 131 131 131 0 0 0.00 17 min. <1 <1
3 N/A 261 274 N/A N/A -4.74 >2hr . <1 <1
4 N/A 228 219 N/A N/A 4.11 >2hr . <1 <1
5 N/A 275 275 N/A N/A 0.00 >2hr . <1 <1
6 N/A 258 258 N/A N/A 0.00 >2hr . <1 <1
7 242 242 242 0 0 0.00 1hr.46min. <1 <1
8 N/A 799 799 N/A N/A 0.00 >2hr . <1 <1
9 N/A 1067 1067 N/A N/A 0.00 >2hr . <1 <1
10 N/A 529 582 N/A N/A -9.11 >2hr . <1 <1
11 N/A 705 705 N/A N/A 0.00 >2hr. <1 <1
12 N/A 549 549 N/A N/A 0.00 >2hr. <1 <1
13 N/A 584 584 N/A N/A 0.00 > 2hr. <1 <1
14 N/A 699 699 N/A N/A 0.00 > 2hr. <1 <1
15 N/A 1131 1130 N/A N/A 0.09 >2hr. <1 <1

Average of % deviation 0 0 -0.64
Standard deviation of % deviation 0 0 2.88

N/A : the opt'mal solution can not tie obtained within 2 hours.
- Algorithm III Is better than the algorithm IV by 0.64% on the average with standard deviation of 2.88.

Table 5.9 Comparison of solutions for the 15 job problems with solutions from
Ow & Morton algorithm

Pro. # O&M alg. Alg. Ill Alg. IV %dev. %dev. %dev. CPU CPU CPU
Sol. Sol. Sol. o fD OfD OfB time (D) time time

(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C)
(D) (B) (C) B C C (sec.) (sec.)

1 226 202 202 11.88 11.88 0.00 <1 <1 <1
2 151 131 131 15.27 15.27 0.00 <1 <1 <1
3 280 261 274 7.28 2.19 -4.74 <1 <1 <1
4 261 228 219 14.47 19.18 4.11 <1 <1 <1
5 527 275 275 91.64 91.64 0.00 <1 <1 <1
6 462 258 258 79.07 79.07 0.00 <1 <1 <1
7 358 242 242 47.93 47.93 0.00 <1 <1 <1
8 868 799 799 8.64 8.64 0.00 <1 <1 <1
9 1422 1067 1067 33.27 33.27 0.00 <1 <1 <1
10 959 529 582 81.29 64.78 -9.11 <1 <1 <1
11 811 705 705 15.04 15.04 0.00 <1 <1 <1
12 570 549 549 3.83 3.83 0.00 <1 <1 <1
13 657 584 584 12.50 12.50 0.00 <1 <1 <1
14 788 699 699 12.73 12.73 0.00 <1 <1 <1
15 1180 1131 1130 4.33 4.42 0.09 <1 <1 <1

Average of % deviation 29.28 28.16 -0.64
Standard deviation of % deviation 30.58 28.98 2.88

-Algorithm III is better than the 0& M algorithm by 29.28% on the average with standard deviation of 30.58.
-Algorithm IV is better than the O&M algorithm by 28.16% on the average, with standard deviation of 28.98.

www.manaraa.com

96

Table 5.10 Comparison of solutions for the 20 job problems
Pro .# O&M alg. Aig. ill Alg. IV %dev. %dev. %dev. CPU CPU CPU

Sol. Sol. Sol. of D o fD of B time (D) time time
(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C)

(D) (B) (C) B C C (sec.) (sec.)
1 583 430 430 35.58 35.58 0.00 < 1 < 1 < 1
2 794 665 665 19.40 19.40 0.00 < 1 < 1 < 1
3 334 221 221 51.13 51.13 0.00 < 1 < 1 < 1
4 742 659 617 12.59 20.26 6.81 < 1 < 1 < 1
5 1128 990 868 13.94 29.95 14.06 < 1 < 1 < 1
6 1430 1025 1069 39.51 33.77 -4.12 < 1 < 1 < 1
7 1088 1037 860 4.92 26.51 20.58 < 1 < 1 < 1
8 1340 920 1069 45.65 25.35 -13.94 < 1 < 1 < 1
9 426 372 363 14.52 17.36 2.48 < 1 < 1 < 1
10 1443 1011 903 42.73 59.80 11.96 < 1 < 1 < 1
11 426 499 426 -14.63 0.00 17.14 < 1 < 1 < 1
12 546 504 515 8.33 6.02 -2.14 < 1 < 1 < 1
13 766 697 687 9.90 11.50 1.46 < 1 < 1 < 1
14 780 636 633 22.64 23.22 0.47 < 1 < 1 < 1
15 712 595 588 19.66 21.09 1.19 < 1 < 1 < 1

Average of % deviation 21.73 25.40 3.73
Standard deviation of % deviation 17.96 15.60 8.95

- Algorithm III Is better than the O&M algorithm by 21.73% on the average with standard deviation of 17.96.
- Algorithm IV is better than the O&M algorithm by 25.40% on the average with standard deviation of 15.60.
- Algorithm IV is better than algorittim III by 3.73% on the average with standard deviation of 8.95.

Table 5.11 Comparison of solutions for the 25 job problems
Pro. # O&M alg. Alg. Ill Alg. IV %dev. %dev. %dev. CPU CPU CPU

Sol. Sol. Sol. OfD OfD of B time (D) time time
(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C)

(D) (B) (C) B C C (sec.) (sec.)
1 1206 1033 1023 16.75 17.89 0.98 < 1 <2 <2
2 568 469 446 21.11 27.35 5.16 < 1 <2 <2
3 827 562 604 47.15 36.92 -6.95 < 1 <2 <2
4 555 436 414 27.29 34.06 5.31 < 1 <2 <2
5 520 305 315 70.49 65.08 -3.17 < 1 <2 <2
6 322 218 218 47.71 47.71 0.00 < 1 <2 <2
7 1493 1121 1121 33.18 33.18 0.00 < 1 <2 <2
8 748 708 683 5.65 9.52 3.66 < 1 <2 <2
9 695 558 558 24.55 24.55 0.00 < 1 <2 <2
10 699 621 545 12.56 28.26 13.94 < 1 <2 <2
11 649 632 600 2.69 8.17 5.33 < 1 <2 <2
12 931 611 606 52.37 53.63 0.83 < 1 <2 <2
13 996 885 885 12.54 12.54 0.00 < 1 <2 <2
14 427 378 371 12.96 15.09 1.89 < 1 <2 <2
15 1336 1192 1132 12.08 18.02 5.30 < 1 <2 <2

Average of % deviation 26.61 28.80 2.15
Standard deviation of % deviation 19.71 16.71 4.73

- Algorithm III Is better than the O & M algorithm by 26.61% on the average with standard deviation of 19.71.
- Algorithm IV is better than the O&M algorithm by 28.80% on the average with standard deviation of 16.71.
- Algorithm IV is better than the algorithm III by 2.15% on the average with standard deviation of 4.73.

www.manaraa.com

97

Table 5.12 Comparison of solutions for the 30 job problems
Pro. # O&M alg. Alg. Ill Alg. IV %dev. %dev. %dev. CPU CPU CPU

Sol. Sol. Sol. of D of D of B time (D) time time
(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C)

(D) (B) (C) B C C (sec.) (sec.)
1 1159 1062 894 9.13 29.64 18.79 < 1 <2 <2
2 951 777 732 22.39 29.92 6.15 < 1 <2 <2
3 1395 810 852 72.22 63.73 -4.93 < 1 <2 <2
4 1268 1084 1120 16.97 13.21 -3.21 < 1 <2 <2
5 1057 941 851 12.33 24.21 10.58 < 1 <2 <2
6 1068 908 891 17.62 19.87 1.91 < 1 <2 <2
7 1032 901 883 14.54 16.87 2.04 < 1 <2 <2
8 1229 1095 1077 12.24 14.11 1.67 < 1 <2 <2
9 1088 654 672 66.36 61.90 -2.68 < 1 <2 <2
10 427 398 431 7.29 -0.93 -7.66 < 1 <2 <2
11 1598 1338 1330 19.43 20.15 0.60 < 1 <2 <2
12 1409 935 894 50.70 57.61 4.59 < 1 <2 <2
13 1300 1055 1031 23.22 26.09 2-33 < 1 <2 <2
14 1357 1110 1021 22.25 32.91 8.72 < 1 <2 <2
15 1552 1249 1306 24.26 18.84 -4.36 < 1 <2 <2

Average of % deviation 26.06 28.54 2.30
Standard deviation of % deviation 20.27 18.77 6-85

- Algorithm III is better tlian the O & M algorittim by 26.06% on the average with standard deviation 20.27.
- Algorithm IV is better than the O & M algorithm by 28.54% on the average with standard deviation 18.77.
- Algorithm IV is better than the algorithm III by 2.30% on the average with standard deviation 6.85.

The results show that algorithm IV, the tabu search, is the best algorithm for

solving the eariiness/tardiness problems compared to algorithm III and the Ow &

Morton algorithm. It outperforms algorithm III and Ow & Morton dispatch algorithm

by about 1.55% and 25.48 %, respectively, on average. Algorithm IV is relatively

better than algorithm III when the size of the problem is increased. Both algorithms

are much better than the Ow & Morton algorithm at all levels. The computational

times for both algorithms are also much faster than those obtained by solving the

corresponding mathematical models by the LINDO software.

in the Ow & Morton algorithm, inserted idle time is not allowed on the

machine and this is different from that of algorithms III and IV. Thus, algorithms III

and IV can be compared to the Ow & Morton algorithm to some degrees.

Although algorithm IV performs better than algorithm III. it has one key

drawback. The algorithm (i.e., algorithm IV) depends on two major parameters, k (in

Ow & Morton algorithm) and the tabu size while the algorithm III does not depend on

any prespecified parameters.

www.manaraa.com

98

5.2 Heuristic comparison in assembly job shop problem

5.2.1 Assembly job shop problem with earliness cost minimization

Algorithm V was employed to solve 50 test problems. The problem sizes are

varied from 2-product and 3-machine (2P / 3M) to 5-product and 5 machine (5P /

5M). The number of operations in the problems is varied from 12 to 42 operations.

Each product has its own product structure. The due-dates and tardiness penalty of

products, the processing times, and the earliness penalty for operations are

randomly generated. The results from algorithm V are compared to the optimal

solutions obtained by applying the LINDO commercial software to solve the

equivalent mathematical models on PC with Pentium III processor and running at

550 MHz. The results of the comparisons are given in Table 5.13.

Table 5.13 Comparison of solutions from algorithm V and optimal solutions
No. Product/ # Oper. Opt. Sol Alg V %difr CPU time CPU time

Machine (unit cost) (unit cost) Alg V from
Opt

Opt.
(sec)

Alg. V
(sec)

1 2P/3M 12 264 264 0.00 2 <1
2 2P/3M 12 160 160 0.00 2 <1
3 2P/3M 12 56 56 0.00 1 <1
4 2P/3M 12 153 153 0.00 1 <1
5 2P/3M 12 270 270 0.00 2 <1
6 2P/3M 12 235 235 0.00 2 <1
7 3P/3M 22 311 311 0.00 97 <1
8 3P/3M 22 457 457 0.00 119 <1
9 3P/3M 22 297 298 0.34 95 <1

10 3P/3M 22 432 432 0.00 72 <1
11 3P/3M 22 322 322 0.00 156 <1
12 3P/3M 22 590 591 0.17 1112 <1
13 3P/3M 22 432 432 0.00 239 <1
14 3P/3M 22 374 374 0.00 415 <1
15 3P/3M 22 159 159 0.00 23 <1
16 3P/3M 22 245 245 0.00 208 <1
17 3P/3M 22 415 421 1.45 376 <1
18 3P/3M 22 315 321 1.90 203 <1
19 3P/3M 22 355 355 0.00 136 <1
20 3P/3M 22 267 267 0.00 41 <1
21 3P/3M 22 500 500 0.00 10 <1
22 3P/3M 20 509 509 0.00 77 <1
23 3P/3M 20 499 499 0.00 34 <1
24 3P/3M 20 193 193 0.00 32 <1
25 3P/3M 20 214 214 0.00 6 <1
26 3P/3M 20 602 610 1.33 51 <1

www.manaraa.com

99

Table 5.13 (continued)
No. Product/ # Oper. Opt. Sol Alg V */.diff CPU time CPU time

Machine (unit cost) (unit cost) Alg V from
Opt

Opt.
(sec)

Alg. V
(sec)

27 3P /3M 20 301 301 0.00 6 <1
28 3P /3M 20 579 579 0.00 201 <1
29 3P /3M 31 1019 1019 0.00 11702 <1
30 3P /3M 31 619 619 0.00 9659 <1
31 4P /4M 27 444 471 6.08 785 <1
32 4P /4M 27 461 471 2.17 96 <1
33 4P /4M 30 572 572 0.00 484 <1
34 4P /4M 30 601 607 1.00 1011 <1
35 4P /4M 30 581 584 0.52 1638 <1
36 4P /4M 30 705 705 0.00 2934 <1
37 4P /4M 27 542 556 2.58 1047 <1
38 4P /4M 29 491 529 7.74 3232 <1
39 4P /4M 29 350 350 0.00 742 <1
40 4P /4M 29 530 530 0.00 466 <1
41 4P /4M 29 334 334 0.00 171 <1
42 4P /4M 29 500 500 0.00 938 <1
43 4P /4M 29 770 794 3.12 4618 <1
44 4P /4M 29 608 614 0.99 393 <1
45 4P /4M 29 601 601 0.00 1433 <1
46 4P/4M 29 632 632 0.00 662 <1
47 4P /4M 29 737 746 1.22 899 <1
48 5P/5M 37 453 453 0.00 1314 <1
49 5P /5M 42 637 637 0.00 11720 <1
50 5P /5M 37 720 742 3.06 11700 <1

Average of '/(difference 0.67
Standard deviation of % difference 1.54

Of the 50 test problems examined (see Table 5.13), algorithm V found the

optimal solutions for 34 problems. The largest deviation from optimal is about 7.74%.

In all the test problems, algorithm V obtained an average deviation solutions of

0.67% from the optimal with a standard deviation of 1.54. The computational

requirements for solving the problems by algorithm V are less than 1 second in all

test problems. They are much less than the computational times required by the

optimal solution procedure.

www.manaraa.com

100

5.2.2 Assembly job shop problem with the sum of weighted earliness
and weighted tardiness cost minimization

To test the efficiency of algorithm VI, more than 50 sample problems were

generated and tested. But it was not possible to find optimal solutions for all

problems by LINDO software because of the storage and computational load

required. LINDO was out of memory for some problems, especially with the large

size problems (4-product and 4-machine. 5-product and 5-machine). Of the more

than 50 sample problems solved, 50 of them were solved optimally by the LINDO

software on a PC with Pentium III processor and running at 550 MHz. Algorithm VI

was applied to solve these 50 test problems. The problem sizes are varied from 2-

product and 3-machine (2P / 3M) to 4-product and 4-machine (4P / 4M). The number

of operations is varied from 12 to 30 operations. Each product has its own product

structure. The due-dates and tardiness penalties of the products are randomly

generated. The processing times, and the eariiness penalties of operations are also

randomly generated. The results of the comparisons for the 50 test problems solved

to optimality by LINDO are shown in Table 5.14.

Table 5.14 Comparison of solutions from algorithm VI and optimal solutions
No. Product/ # Oper. Opt. Sol Ala VI %diff CPU time CPU time Comment^

Machine (unit cost) (unit cost) Alg VI Opt. Alg 6 (T ardiness
from Opt (sec) (sec) Type)

1 2P/3M 12 275 275 0.00 7 <1 1
2 2P/3M 12 458 458 0.00 6 <1 1
3 2P/3M 12 513 518 0.97 3 <1 1
4 2P/3M 12 284 284 0.00 5 <1 1
5 2P/3M 12 530 530 0.00 3 <1 1
6 2P/3M 12 347 347 0.00 7 <1 2
7 2P/3M 12 487 487 0.00 10 <1 2
8 2P/3M 12 631 631 0.00 5 <1 2
9 2P/3M 12 556 556 0.00 5 <1 2
10 2P/3M 12 680 680 0.00 5 <1 2
11 3P/3M 20 300 300 0.00 40 <1 1
12 3P/3M 20 479 479 0.00 232 <1 1&2
13 3P/3M 20 980 980 0.00 181 <1 1
14 3P/3M 20 798 798 0.00 185 <1 1
15 3P/3M 20 299 299 0.00 684 <1 1&2
16 3P/3M 20 886 886 0.00 1059 <1 1
17 3P/3M 20 625 629 0.64 1280 <1 2
18 3P/3M 20 682 682 0.00 631 <1 2

www.manaraa.com

101

Table 6.14 (continued)
No. Product/ # Oper. Opt. Sol Alg VI Vadiff CPU time CPU time Comment *

Machine (unit cost) (unit cost) Alg VI Opt. Alg 6 (Tardiness
from Opt (sec) (sec) Type)

19 3P/3M 20 682 752 10.26 917 <1 2
20 3P/3M 20 746 770 3.22 298 <1 2
21 3P/3M 20 846 846 0.00 279 <1 2
22 3P/3M 20 956 958 0.00 1232 <1 2
23 3P/3M 20 1025 1025 0.00 551 <1 2
24 3P/3M 22 587 587 0.00 3959 <1 2
25 3P/3M 22 306 306 0.00 724 <1 2
26 3P/3M 22 357 357 0.00 381 <1 1&2
27 3P/3M 22 311 318 2.25 264 <1 1&2
28 3P/3M 22 440 440 0.00 1213 <1 1&2
29 3P/3M 22 754 819 8.62 1986 <1 1
30 3P/3M 22 533 533 0.00 374 <1 1
31 3P/3M 22 419 419 0.00 965 <1 1&2
32 3P/3M 22 397 406 2.27 412 <1 1
33 3P/3M 22 615 643 4.55 536 <1 1
34 3P/3M 22 865 1003 15.95 435 <1 1
35 3P/3M 22 648 707 9.10 329 <1 1
36 3P/3M 22 766 766 0.00 1322 <1 2
37 3P/3M 22 807 820 1.61 2344 <1 2
38 3P/3M 22 744 756 1.61 368 <1 2
39 3P/3M 22 1320 1320 0.00 938 <1 2
40 3P/3M 22 1250 1310 4.80 900 <1 2
41 3P/3M 22 1396 1483 6.23 610 <1 2
42 4P/4M 27 595 673 13.11 2069 <1 2
43 4P/4M 27 542 549 1.29 673 <1 2
44 4P/4M 27 995 1120 12.56 5844 <1 2
45 4P/4M 27 1112 1192 7.19 2875 <1 2
46 4P/4M 27 797 813 2.01 1922 <1 2
47 4P/4M 30 707 712 0.71 5281 <1 1
48 4P/4M 30 918 947 3.16 5204 <1 1
49 4P/4M 30 1097 1214 10.67 4891 <1 2
50 4P/4M 30 648 672 3.70 5029 <1 2

Average of "/(difference = 2.53
Standard deviation = 4.12

Tardiness type 1: To obtain feasible solution, some products must be tardy.
® Tardiness type 2: Feasible solution can be obtained without any tardiness, but forcing some

products to be tardy reduces the total cost

Of the 50 test problems examined (see Table 5.14), algorithm VI found the

optimal solutions for 27 problems. The largest deviation from optimum is about

15.95%. In all test problems, algorithm VI obtained an average deviation solutions of

2.53% from the optimum and with a standard deviation of 4.12. The computational

www.manaraa.com

102

requirements for solving the problems by algorithm VI are less than 1 second in all

problems tested. These times are much less than the computational times of the

optimal solution procedure.

www.manaraa.com

103

CHAPTER 6

SUMMARY AND CONCLUSION

In this research, the following four scheduling problems have been studied:

(1) single machine problem with earliness cost minimization, (2) single machine

problem with the sum of the weighted earliness and weighted tardiness cost

minimization, (3) assembly job shop problem with earliness cost minimization, and

(4) assembly job shop problem with the sum of weighted earliness and weighted

tardiness cost minimization. Four mathematical models based on these four

scheduling problems were developed in an effort to obtain optimal solutions. Six

heuristic algorithms were developed to solve the problems. Algorithms I and II were

developed to solve the single machine problem with earliness cost minimization.

Algorithms III and IV were developed to solve the single machine problem with the

sum of the weighted eariiness and weighted tardiness cost minimization. Algorithm V

was developed to solve the assembly job shop problem with eariiness cost

minimization and Algorithm VI was developed to solve the assembly job shop

problem with the sum of weighted eariiness and weighted tardiness cost

minimization. The performances of the heuristic algorithms were demonstrated on

some sample test problems. Quality of solutions and CPU time of solutions were the

performance measures of interest.

6.1 Summary of the research

We have identified several properties of optimal solutions for the single

machine scheduling problem with the objective of minimizing the weighted eariiness

penalty. Algorithm I was developed based on these properties while algorithm II is

based on the tabu search concept with short term memory search. Both algorithms I

and II were applied to 75 test problems. The problem sizes are varied from 10 to 30

jobs. The results from both algorithms were also compared with the optimal solutions

for the problem cases involving 10 jobs and 15 jobs. The results from both

algorithms I and II indicate that these two algorithms are able to produce solutions

www.manaraa.com

104

close to optimal in small size problems. For the large problems, the quality of the

solutions from algorithm I based on optimality conditions are relatively better than

those obtained by algorithm II based on tabu search concept by approximately

1.09%. The computational time to solve the problems by these two heuristic

algorithms is less than 2 second in all cases.

Algorithms III and IV are respectively the extension of heuristic algorithms I

and II. Algorithm III is a combination of the features of algorithm I and the paioA/ise

interchange method while algorithm IV is based on the tabu search concept. The

only difference between algorithms II and IV is that job tardiness is allowed in

algorithm IV. Algorithms III and IV were applied to 75 test problems of single

machine problem with the sum of the weighted eariiness and weighted tardiness

cost minimization. The results from these two algorithms were compared with the

optimal solutions for the problem cases involving 10 and 15 jobs. The solutions from

both algorithms were also compared with the Ow & Morton [31] dispatching

algorithm, in Ow & Morton [31] algorithm, inserted idle time is not allowed on the

machine and this is different from that of algorithms III and IV. Thus, algorithms III

and IV can be compared to the Ow & Morton algorithm to some degrees. For small

size problems, the results Indicate that algorithm III obtained an average deviation

solutions of 1.38% from optimal while algorithm IV based on tabu search obtained

an average deviation of 1.18% from the optimal. For all problems tested, the results

show that algorithm IV, the tabu search, is the best algorithm for solving the

earliness/tardiness problems compared to algorithm III and the Ow & Morton

algorithm. It outperforms algorithm III and Ow & Morton [31] dispatch algorithm by

about 1.55% and 25.48%, respectively, on average. The computational time to solve

the problems by these two heuristic algorithms is less than 2 seconds in all cases.

Algorithm V is extended from algorithm I. It is applied to solve multiple

machine problems with eariiness cost minimization. In algorithm V, a multiple

machine problem is decomposed into a set of single machine problems. Each

decomposed single machine problem is solved by algorithm I. Decomposed single

machine problems are related to one another by the precedence relationships

www.manaraa.com

105

between operations in the product structures. Algorithm V was applied to 50 test

problems. The test problems are varied from 2-product and 3-machine (2P / 3M)

problems to 5-product and 5 -machine (5P / 5M) problems. Each product has its own

product structure. The number of operations is varied from 12 to 42 operations. The

solutions from algorithm V were compared to the optimal solutions. The results show

that the largest deviation is about 7.74% from the optimal. This deviation was

registered for a 4-product and 4-machine problem. But in all tested problems,

algorithm V obtained an average deviation solutions of 0.67% from the optimal. The

computational requirements for solving the problems are less than 1 second in all

tested problems. They are much less than the computational times of the optimal

solution procedure.

Algorithm VI is the extension of algorithm V. It is a combination of the features

of algorithm V and a method that can identify the appropriate amount of tardiness

allocation for each product. Algorithm VI was applied to 50 test problems consisting

of multiple machines and multiple jobs based on the minimization of the sum of

weighted eariiness and weighted tardiness cost. The test problems varied from 2-

product and 3-machine (2P / 3M) problems to 4-product and 4-machine (4P / 4M)

problems. Each product has its own product structure. The number of operations

involved varied from 12 to 30 operations. The solutions from algorithm VI were

compared to the optimal solutions. The results show that the largest deviation is

about 15.95% from the optimal and was obtained in a 3-product and 3-machine

problem. But in all problems tested, algorithm VI obtained an average deviation

solutions of 2.53% from the optimal. The computational requirements for solving the

problems are less than 1 second in all test problems. They are much less than the

computational times of the optimal solution procedure.

www.manaraa.com

106

6.2 Conclusion

In this research, a lack of heuristic algorithms in open literature for scheduling

jobs of practical sizes in assembly job shop with the sum of weighted earliness and

weighted tardiness penalties prompted the developments of six heuristic algorithms.

The development of the heuristic algorithms starts with the development of heuristics

for the single machine problem with eariiness cost minimization (i.e., Alg I and Alg II)

and single machine problem with the sum of weighted eariiness and weighted

tardiness costs minimization (i.e. Alg. Ill and Alg. IV). Finally, the heuristics of single

machine problems were extended to solve the assembly job shop problem with the

eariiness cost minimization (i.e., Alg. V) and assembly job shop problem with the

sum of weighted eariiness and weighted tardiness penalties (i.e., Alg. VI).

The effectiveness of the heuristic algorithms for single machine problem (Alg.

I, II, III, and IV) was demonstrated by the quality of solutions they produced on test

problems. For problems of sizes 10-15 jobs, the solutions obtained were on average

within 4% of optimal solution. It was also shown that the heuristics can solve large

problems within very short computation times (i.e., less than 2 seconds in all cases).

For large size problems, the optimal solutions could not be obtained to assess

adequately their effectiveness. Algorithms I and II were compared with each other,

while algorithm III was compared to algorithm IV. It was found that algorithm 1 was

relatively better than algorithm II, and algorithm IV was relatively better than

algorithm III.

In the case of assembly job shop problem, the effectiveness of algorithm V

and VI was demonstrated by the fact that they produced on average solution within

1% and 3% of the optimum solution respectively. It was also shown that the

heuristics can solve large problems within very short computational times (i.e., less

than 2 seconds in all cases).

One of the most important aspects of the developed heuristic algorithms is

that they are general enough to be used in any environment where job scheduling is

required. Algorithm V and VI can also be applied to traditional job shop problems

without product assembly considerations. These methodologies can be easily

www.manaraa.com

107

implemented. They provide a very systematic way for scheduling. They can

generate good solutions within a reasonable time.

6.3 Research contributions

The contributions of this research in the area of scheduling with cost

consideration are significant. It introduces six effective heuristic algorithms for

scheduling problem with cost consideration. The first two heuristics deal with single

machine with eariiness penalty minimization. The third and fourth heuristics were

developed to solve single machine problem with the sum of weighted eariiness and

tardiness penalties minimization. These four algorithms are very easy to apply in any

environment. The first and third heuristics also contain one significant benefit. They

do not need any prespecified parameters, which are always required in many

algorithms in literature such as in Ow and Morton dispatching algorithm [31].

The contributions of the last two heuristics (i.e., algorithm V and VI) are very

significant in the area of scheduling, since they deal with cost minimization in an

assembly job shop. As previously mentioned in section 1.2, there have been very

few reported research that focused on assembly job shop. With a few published

papers on assembly job shop, most of them deal with such regular measures as

mean flow time and completion time. To our knowledge, no published paper deals

exactly with the minimization of the weighted eariiness and weighted tardiness

penalties in assembly job shop problem. It can be claimed that both algorithm V and

VI are the very first algorithms dealing with assembly job shop with eariiness and

tardiness cost consideration. Both algorithm V and VI are also proofed to be

effective heuristics and general enough to apply in industries.

These six developed heuristics are useful in real worid industries, since they

deal exactly with the eariiness and tardiness cost. The eariiness and tardiness

criterion is considered as one of important measure in Just in time (JIT) production

system, which are widely applied in many industries. As mentioned eariier, the

scheduling problem dealing with eariiness and tardiness criterion is an NP-complete

problem even in the single machine case [6]. The optimal solution is prohibited to

www.manaraa.com

108

obtain in large size problems, which are normal problem size in industries. But the

developed heuristics in this research can be applied to solve even large size

problem in a reasonable computational time and the performance of these six

heuristics are good compared to optimal solution in small size problems.

6.4 Possible extension

The heuristic algorithms modeled in this research allowed idle time in the

generated schedule. The cost of machine staying idle was not considered in this

research. This condition may not be true in industries where machine cost is

extremely high and the machine idle time is prohibited. Generating the best schedule

without idle time is different from the schedule which is generated by the heuristic

algorithms developed in this research. Further research might address this problem

by considering the cost of machine staying idle in additional to eariiness and

tardiness costs.

The case of having identical sub-assemblies in different products and

consolidating these subassemblies together for scheduling was not considered in

this study. In this study, each sub-assembly was considered as a unique product. If

the problem involves setup cost, the consideration of scheduling identical sub

assemblies as a large batch might be necessary. Scheduling identical sub

assemblies in large batch reduces setup cost and this in tum can reduce the overall

costs. The developed heuristics can be further improved by considering this

condition.

Finally, in this study, machine break down was not considered. Work delay

based on machine failures is a normal situation in industry. The consideration of

machine failure would increase the complexity in scheduling. To implement this

extension, stochastic modeling may be required for developing the heuristic

procedures.

www.manaraa.com

109

APPENDIX A

PROOF OF THE PROPOSITIONS

In this section, propositions presented in section 3.1.2 are proved. These

propositions are developed for finding the optimal ordering of any two jobs for

minimizing weighted earliness penalty. We consider the cases where two jobs are

not possible to complete at their due-dates due to conflict (see Fig A.1). From Fig.

A.1, if we would like to obtain optimal non-conflict ordering of two jobs, at least, a job

must be leftward shifted. Rightward shift can not be employed, since it causes

tardiness of jobs, a violation of constraints. There is no exact mle to select jobs to be

leftward shifted jobs. It depends on the conditions and parameters of the jobs,

intuitively, we would like to schedule a job with the largest eariiness penalty (E,)

closer to its due-date. However, such simple rule may not always guarantee optimal

ordering. Jobs with small earliness penalty and small processing time (t,) may have

higher priority to schedule closer to their due-dates than jobs with high earliness

penalty and high processing time. Thus, the ratio of earliness penalty and

processing time (E, / t,) may be more suitable for scheduling consideration than

simply using only the eariiness penalty. Based on the weighted longest processing

time njle, WLPT 'in [31], jobs with larger V7(where Y) = E,/f/) must schedule closer to

their due-dates than jobs with smaller Yj value. In WLPT rule [31], if the WLPT

sequence (i.e. Yi:^2 sY3<. where Y„ is the n^^ job on the sequence)

results in a schedule that does not have any tardy jobs, then this sequence is

optimal. The WLPT rule can not be directly applied to the work reported in this

research, since the WLPT sequence may not yield a schedule without any tardy

jobs. For example, job 1 has 5 units of processing time, due-date at 5, and 10 unit

cost/unit time for eariiness penalty. Job 2 has 5 units of processing times, due-date

at 10, and 5 unit cost/unit time for eariiness penalty. If the WLPT rule is employed,

the schedule is 2-^1. These sequence causes job 1 to be tardy and this is

unacceptable in this research. To deal with this problem, five propositions are

explored for optimal ordering between two conflict jobs based on E//f„ due-dates of

www.manaraa.com

110

i

i j

i

Di Dj

Figure A.1 Jobs / and J overlap each other, if each completes on its due date

both jobs, and sonne other conditions. These five propositions are mathematically

derived as discussed below.

Proposition 1. For the case where jobs / and j are not possible to complete

E E
exactly on their due-dates due to conflict, if — < — and Di < D, , then the optimal

non-conflict ordering between jobs / and j is that job / precedes job j (i-fj) as shown

in Fig. A.2.

i
j

i

Figure A.2 Illustration of the proposition 1

www.manaraa.com

111

Proof. Suppose that the cost of j-*i (Fig. A.3a) is less than i^' (Fig. A.3b).

(a)

i J

Di Dj

Figure A.3 Proof of proposition 1

(b)

D. Dj

J-^

(Dj - (Di - t i))Ej

(Dj -Di -^t i)Ej

(Dj - D,)Ej + ti Ej

<

<

<

(Di - (Dj - t j))Ei

(Di- Dj + tj)Ei

(Di - Dj)Ei + t j E i

Since (Dj - Di) is positive and (Di - Dj) is negative, and f,Ey > t j E i , then the

relation {Dj-Di)Ej + tiEj < (Di -Dj)Ei + fyE, is a contradiction. Therefore, proposition 1 is

true.

Proposition 2. For the case where Di< Dj, and both jobs / and j

are not possible to complete exactly on their due-dates due to conflict, if

(D, -Dj)< , then the optimal non-conflict ordering between jobs / and j is

that job / precedes job j (i j), otherwise J -> i (see Fig A.4).

www.manaraa.com

112

j

i

Di Dj

I
1

' 1 j

Di Dj

Di Dj

Figure A.4 Illustration of the proposition 2

Proof. For the case that cost of i-fj (Fig. A.5(a)) is (ess than j-*i (Fig. A.5(b)),

i 1 j

D. DJ

(a) (b)

Figure A.5 Proof of proposition 2.

(D, - (Di - t j))Ei

(Di - Dj + t j)Ei

(Dj - Dj)Ei + t j E ,

(Di -Dj)Ei+(Di-Dj)Ej

(Di -Dj)

<

<

<

<

<

j-^

(Dj - (D , - t ,))Ej

(Dj -Di -^t i)Ej

(Dj - Di)Ej + ti Ej

t i E j - t j E i

t -Ej t jEi
(E , ^ E .)

Di Dj

www.manaraa.com

113

On the other hand, if (Di - Dj) > (ti Ej - tj E,) / (E-, + Ej) , then j—H . The

proposition 2 is proved.

Proposition 3. For the case where jobs / and j are not possible to connplete

exactly on their due-dates due to conflicts between jobs /, j and k where k is already

£ E
scheduled. If — < —, then the optimal non-conflict ordering between jobs / and J is

that job / precedes job j.

For example, in Fig. A.6, suppose a third job (i.e. job k) is already scheduled for

processing between the t ime per iod f rom B to B* and the due-dates of jobs / and j

fall within this time period (i.e. B < D„ Dj < B*). Thus jobs / and / can not be

E E
processed between B to B*. If then the optimal non-conflict ordering is that

i j and the completion time of job j is at time 8.

; t

k
• ' 1 J

k

J t
i
i i

t
i
i

t
i
i

B B Di Dj B*

Figure A.6 Illustration of the proposition 3

Di Dj B*

www.manaraa.com

114

J i 1 J

B Di Dj B»

(a)

B

(b)

Di Dj B»

Figure A.7 Proof of proposition 3.

Proof. Suppose that the cost of j-^n (Fig.A7(a)) is less than (Fig.A7(b))

(Di - (Dj -WEf^(Dj- (Dj -T- t i))Ej < (Di - (Dj -T- t j))Ei ̂ (Dj - (Dj -V)Ej

(Di - Dj)E, + TEi + TEj + t/Ej < (Di — Dj)Ei + TEi + tjEi + TEj

ti Ej < tjEi

(Ej/ t j) < (Ei / t i)

E E
Since the relation contradicts the stated condition ——, so proposition 3

Is proved.

Proposition 4. For the case where job k is already scheduled, and job j is

not possible to complete exactly on its due-date due to conflicts between jobs j and /,

and jobs j and k, and job / is not possible to complete exactly on Its due-date due to

E E
conflict between jobs / and j (see Fig. A.8(a)), If y-< —, then the optimal non-

conflict ordering between jobs / and j is that job / precedes job j (i j).

www.manaraa.com

115

For example, in Fig A.8, suppose a third job (i.e. job k) is already scheduled for

processing between the time period from B to B* and the due-date of job j falls within

t h i s t i m e p e r i o d (i . e . 8 < D j < B *) . T h u s j o b j c a n n o t b e p r o c e s s e d f r o m t i m e B t o D j .

E E
Similariy, job / has conflict with job j, but not with job k. If , then the optimal

non-conflict ordering is that / -:>/and the completion time of job j is at time B.

1 t

Ic i 1 j k

j i •

j i
i •

j

Dj B Dj B* Di B DJ B*

(a) (b)

Figure A.8 Illustration of the proposition 4

Proof same as proposition 3.

Proposition 5. For the case where job k is already scheduled, and job j is not

possible to complete exactly on its due-date due to conflicts between jobs j and /,

and jobs j and k, and job / is not possible to complete exactly on its due-date due to

E E
conflict between jobs / and j (see Fig. A.9 (a)), if — > — and (D, - Dj + T) <

h ^ J

where T is the lenght of time that job j can not be processed until its
(E , + E j)

due-date due to the conflict between jobs j and k, then the optimal non-conflict

ordering between jobs / and j is that job / precedes job j (/ -*• j). On the other hand, if

E . t E • t E
—^ — and (Di - D; + T) > , then the optimal non-conflict ordering
t . t , (E , + E ,)

www.manaraa.com

116

between jobs / and j is that job j precedes job / 0 ')• This proposition can be

shown as in Fig A.9.

In Figure A.9, suppose that job k is already scheduled for processing between

the time per iod from B to B* and the due-date of job j is in this t ime per iod (i .e . B <Dj

<B*). Thus job J can not be processed from B to O,. Similarly, job / has conflict with

E E
job j, but not with job k. In this case, T = Dj - B. \i (^i - Oj + T) <

then / j as in Fig. A.9(b). If — > — and (D, - D, + T) >
(^ , + ^ j) t . t j

then j -> / as in Fig. A.9(c).

Figure A.9 Illustration of the proposition 5

www.manaraa.com

117

Proof. For the case that cost of (Fig. A.9(b)) is less than j-^ /(Fig. A.9(c)),

M y-> i
(Dj - (Dj - T))Ej + (D, - (Dj -T- t j)E; < (Dj - (D; - t ,)) Ej

TEj + (Di- Dj)Ei + TE, + tj E, < (Dj — Di)Ej +1, Ej

(Ej + Ei)T+(Di-Dj)Ei-(Dj-Di)Ej < t,Ej - tjEi

(Ej + r + (Di - Dj)(Ej Ei) < t, Ej - tj E,

(Di -Dj -^T) <
~t ,E,

(E, +E, j

This proves the proposition. On the other hand. If (Di - Dj + 7]) >

- t j E i) / (Ei + Ej) , then j-» . The proposition 5 is proved.

www.manaraa.com

118

APPENDIX B

THE OW & MORTON ALGORITHM

This algorithm was presented by Ow and Morton [31] in 1989. In this

algorithm, the priorities of unscheduled jobs are determined when the machine

becomes available. The highest priority job is selected to schedule next. The priority

rule is based on the slack time of unscheduled jobs at the moment that the machine

becomes available, and the value of a parameter k. The value of parameter k is

assigned by the scheduler. It is an average number of jobs that the scheduler would

like to see when a sequence decision is to be made. The steps of the algorithms are

as presented below.

Algorithm

Step 1. Set ETIME = 0, 7r= 0, a=J, and set k (parameter).

Step 2. For all a, calculate the priority of job /, P,fs,), at time ETIME :

Step 3. Schedule the highest priority job /;

Starting time of job / = ETIME]

Completion time of job / = starting time of job / + t,.

Step 4. Set ETIME - completion time of job /, tt*- 7r+{i}. a - a -{i}.

Step 5. If I cr| = 0, stop, otherwise, go to step 2.

W, if s, < 0

- E, otherwise

www.manaraa.com

119

Where Wi = the tardy cost rate (costs/unit time) of job /,

Ei = the early cost rate (costs/unit time) of job /,

t = the average processing time,

N = the number of jobs,

k = the selected parameter {1 < k < N) ,

Dj = due-date of job /,

ti = processing time of job /,

ETIME = the earliest available time of the machine,

s, = the slack time of job / at time ETIME (Si = D, - ETIME — t/).

Pi (Si) = the priority of job / with slack time s,.

n: = the set of secheduled jobs,

cr = the set of unscheduled jobs.

J = the set of all jobs.

www.manaraa.com

120

APPENDIX C

ALGORITHM ILLUSTRATION

C.1 Algorithm I illustration

To illustrate the steps of the algorithm I, consider example 3.1 in Chapter 3 ,

whose parameters are described as in Table C.1. The steps of employing algorithm I

to example 3.1 is illustrated as follows:

Table C.1 Parameters of example 3.1
Job 1 2 3 4 5 6 7 8

ti 3 4 9 10 10 5 7 2

Di 80 80 75 66 64 60 50 43

Ei 6 4 9 2 3 7 5 1

Yi 2 1 1 0.2 0.3 1.4 0.71 0.5

Step 0. Initialization

Oa. Set k=0, {1,2.3,4.5,6,7,8}, TIME = 80.

Ob. For each is cr, set Si= <!>, Y,- —.

Step 1. Construct an ideal solution

1a. Ci = 80, Si = 77. C2 = 80, S2 = 76, C3 = 75, S3 = 66, C4 = 66, S4 = 56,

C5 = 64, Ss = 54. Ce = 60, Sg = 55. C7 = 50, S7 = 43, Cg = 43, Se = 41

(see Fig C.1).

lb. There are conflicts between jobs. Go to step 2.

Step 2. Select i * ~ 1 (D i= T IME) .

Step 3. Set Ci = 80, Si = 71, and 5 ̂ - {2} (since D2 > Si).

Step 4. Since Yi > Y2 , go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 77. Schedule job 1 at Ci = 80, Si = 77 (see Fig C.2).

www.manaraa.com

121

6
• »
ss so

7
•

76 ao

1
• •

64

30 40 50 60 70 80 90

Figure C.1 Ideal solution for example 3.1

^ 1 ^
77 80

30 40 50 60 70 80

Figure C.2 Scheduled job 1 of example 3.1

90

www.manaraa.com

122

Step 7c. cT= {2.3,4.5,6,7,8}. ;r= {1}

Step 7d. I cr| 0 go to step 2.

Step 2. Select i * = 2 (D2> T IME) .

Step 3. Set C2 = 77. S2 = 73, and S2 - {3}

Step 4. Since Y2 = Y3 , go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 73. Schedule job /*at C2 = 77, 82 = 73 (see Fig. C.3).

2 I
• — •

73 77 80

30 40 50 60 70 80 90

Figure C.3 Schedule job 2 of example 3.1

Step 7c. a ={3,4,5,6,7,8}, Tt= {1,2}

Step 7d. I cr| 0 go to step 2.

Step 2. Select i* = 3 (D3 > TIME).

Step 3. Set C3 = 73, S3 = 64, and 63 = {4}

Step 4. Since Y3> Y4 , go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 64. Schedule job 3 at C3 = 73, S3 = 64 (see Fig. C.4).

www.manaraa.com

123

3 2 I
• • • •
64 73 77 80

30 40 50 60 70 80 90

Figure C.4 Schedule job 3 of example 3.1

Step 7c. cr= {4,5,6,7,8}, n- {1.2,3}

Step Y d . I crI 0 go to step 2.

Step 2. Select i* = 5 (Ds = TIME, and Y5> Ya).

Step 3. Set C5 = 64, S5 = 54, and SS^ {4,6}

Step 4. Since Ye > Y5 , Ye > Y4 go to Step 5.

Step 5. Select j* = 6.

Step 6a. Calculate T5 = 0.

t E - t E
Step 6b. Since (De — D5 +T5)= -4 > ^ = - 5.5, then job 6 is selected to be

(E , + E J

job /* instead of job 5. Set C5 back to be its due-date (C5 = 64, S5 =

54). Set R = 6. and go to step 3.

Step 3. Set Cg = 60, Sg = 55, and = {4,5}

Step 4. Since Vg > V5 and Vg > Y4 go to Step 7 .

Step 7a.There is imbedded idle period. Set k = 1 . Ai = (60, 64).

Step 7b. TIME = 55. Schedule job 6 at Cg = 60, Sg = 55 (see Fig. C.5).

www.manaraa.com

124

6 3 2 1
• • • • • •

55 60 64 73 77 80

30 40 50 60 70 80 90

Figure C.5 Schedule job 6 of example 3.1

Step 7c. cr= {4,5,7,8}, 7r= {1,2,3,6}

Step 76. \ cr j 0 go to step 2.

This procedure is repeated for the rest of the jobs. Based on the algorithm,

jobs 5, 7, 8, 4 are scheduled respectively as shown in Fig. C.6.

After job 4 is scheduled, the problem contains |cr | = 0. Then, the algorithm

moves to step 8 for calculating the total weighted earliness cost.

4 8 7 5 6 3 2 1
• » • • • • • • «—•
26 3638 45 55 60 64 73 77 80

20 30 40 50 60 70 80

Figure C.6 Job schedule for example 3.1

90

www.manaraa.com

125

Step 8. Calculate total weighted earliness cost, Z = 147 unit cost.

Step 9. Keep the solution from step 8 as the current best solution by setting

S', = 77. C, = 80. S'2 = 73, C'z = 77, S'z = 64, C'3 = 73, S'4 = 26, C= 36,S 5

= 45, C's = 55, S 6 = 55, C e = 60, S'7 = 38, CV = 45, S s = 36, C'a = 38,K' = t,

= C60, 64;, Z' = 147.

Step 10. There is an imbedded idle time, A'i = (60, 64), then go to step 11.

Step 11a. Set fit as the set of jobs that are scheduled before A'i and are able

to fill m A'i, /3i = (5).

Step lib. Assign job 5 to fill A'i = (60, 64). C5 = 64, 85 =54. Since 85 < 60, thus

jobs 6,7,8 and 4 must be leftward shifted.

Step 11c. Set jobs 6,7,8 and 4 in an ideal form, set cr= {4,6,7,8} and set TIME.

= S5 (i.e. 54). The schedule is as shown in Fig. C.7.

43 so 56

54

66

64

2 I
• *

73 77 80

42>3 55 60

30 40 50 60 70 80 90

Figure C.7 Assign job 5 to fill in the imbedded idle time period A'i s (60, 64)

Step 2. Select i* = 6 CDg > TIME and Ye > Y4).

Step 3. Set Cg = 54, Sg = 49, and Se- (4, 7}

Step 4. Since Vg > , and Y6> Yj, go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 49. Schedule job 6 at Ce = 54, Sg = 49 (see Fig. C.8).

www.manaraa.com

126

•-

43

-•
50

•-
56

-•

66

6
•-
49 54 64

-• • •
73 77 80

30 40 50 50 70 80 90

Figure C.8 Schedule job 6 of example 3.1 after assigning job 5 to fill A'i - (60, 64)

Step 7-C. cr= {4,7.8}, n- {1,2.3.5,6}

Step 7-D. I <t| 0 go to step 2.

Step 2. Select i* = 7 CD7 = TIME, and Y7> Y4).

Step 3. Set C7 = 49. S7 = 42. and S3 = {8.4}

Step 4. Since Y7> Y4, Y7>Ys, go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 42. Schedule job 7 at €7 = 49. 87 = 42

Step 7c. a = {4,8}, n = {1.2.3.5,6.7}

Step 7d. I cr I 0 go to step 2.

Step 2. Select /* = 8 (Da = TIME, and Y8> Y4).

Step 3. Set Ca = 42, Sa = 40. and Sa = {4}

Step 4. Since Vs > >4 , go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 40. Schedule job 8aXCa = 42.Sa = 40

Step 7c. cr= {4}. tc- {1.2,3,5,6,7,8}

Step 7d. I cr| 9!: 0 go to step 2.

Step 2. Select i * = 4 (D 4 > T I M E) .

www.manaraa.com

127

Step 3. Set C4 = 40, S4 = 30, and ^4 = ^

Step 4. Go to Step 7 .

Step 7a. No imbedded idle period.

Step 7b. TIME = 30. Schedule job 4 at €4= 40, 84 = 30 (see Fig. C.9).

• •
40 42 30 49 54 64 73 77 80

30 40 50 60 70 80 90

Figure C.9 The best job schedule obtained from Algorithm I

Step 7c. a= (p, 7r= (1,2,3,4,5,6,7,8}

Step 7d. I cr| = 0 go to step 8.

Step 8. Calculate total weighted earliness cost, Z = 130 unit cost. This is better than

the Z = 147 previously obtained.

Step 9. Keep the solution from step 8 as the current best solution by setting

S'i = 77, C'i = 80, S'2 = 73. C'z = 77, S'3 = 64, C'3 = 73, S'4 = 30, C'4 = 40,S'5

= 54 , C's = 64, S'e = 49, C'e = 54, SV = 42, C'7 = 49, S'g = 40, C'g = 42, K' =

0, Z' = 130.

Step 10. Since there is no imbedded idle period, go to step 14.

Step 14. Schedule all job i e J where S, = S,-. and C, = C,-., and stop.

www.manaraa.com

128

C.2 MCE algorithm illustration

To illustrate the steps of the MCE algorithm (see pages 67-69), consider

example 4.1 in Chapter 4 (page 61), whose product structures and parameters are

described as in Figure 4.1 (page 58) and Table 4.1 (page 62), respectively. The ideal

solution of example 4.1 is as shown in Figure 4.2 (page 63). Lets consider the latest

conflict set consisting of operations 1011, 1111, and 2011. This conflict set can be

eliminated by MCE algorithm as follows:

Step 0. Initialization

Oa. Set a= {O(ioii). 0(iiii), O(20ii)}, <f>, TIME = 500.

Ob. Set S(ioii) - <f>, S(iiii) = (f>, S(2oii) - <f>, Y(ioii) - 0.7, Ypm) = 1, Y(2oii) = 0.36.

Stepi. D(ioii) — 500, D(2oii) ~ 500. — 400.

Step2. P = {O(2oii), O(ioii)}. 0(rjkty- 1011.

Step 3. Set Cwn = 500, Sioii = 400. The O(2oii) conflicts to Oc70Yt;.then

5(1011)={0 (2011]} •

Step 4. Y2011 < Y1011, go to step 7.

Step 7. Schedule O(io i i) on machine

7a. Set C1011 - 500 and S1011 = 400 (see Fig C.10), TIME = 400.

7b. (J = (0(2011) , 0(1111)} AOD {O (io i i) } -

7c. Since |cr| 0, then go to step 2.

Step2. P = {0(2oii). 0(iiii)}. O(ijfd)' - 1111.

Step 3. Set C(i i i i)— 400 , S(i i i i) — 360 .The O(2oii) conflicts to Octjfr;. then

S(llll)=(O(2011l}-

step 4. Y2011 < Y1011, go to step 7.

Step 7. Schedule 0(i i i i) on machine

7a. Set C1111 = 400 and Sim = 360 (see Fig C.11), TIME = 360.

7b. c r = { O (2 o i i) } and ; r= { O (i o i i) , 0 (i i i i) } .

7c. Since |cr| 0, then go to step 2.

www.manaraa.com

129

1011

M/C #1 ^
400 500

150 200 250 300 350 400 450 500 550

Figure C.10 Schedule operation 1011 in example 4.1

M/C #1
n i l 1011

360 400 500

150 200 250 300 350 400 450 500 550

Figure C.11 Schedule operation 1111 in example 4.1

www.manaraa.com

130

Step 2. P = {0(2011)}- O(ijicj)- ~ 2011.

Step 3. Set C(2oii) = 360 , S(2oii) = 220 . There is no any job that conflicts with O(2022)-

Go to step 7.

Step 7. Schedule O(2oii) on machine

7a. Set C2011 = 360 and S2011 = 220 (see Fig C.12), TIME = 220.

7b. (T= ^and ;r= {O(ioii), Opm)^ 0(2oii]}-

7c. Since \a\ -0. then MCE algorithm stops.

2011 1111 1011

M/C #1
220 360 400 500

150 200 250 300 350 400 450 500 550

Figure C.12 Schedule operation 2011 in example 4.1

www.manaraa.com

131

C.3 Algorithm V illustration

To illustrate the steps of algorithm V (pages 69-72), consider example 4.1 in

Chapter 4 (page 61), whose product structures and parameters are described as in

Figure 4.1 (page 58) and Table 4.1 (page 62), respectively.

Step 0. Set M = (p. For each operation, set it as an unscheduled operation.

Step 1. Construct an ideal solution.

la. S(ioii) = 400, C(ioii) = 500, Spm) — 360, — 400, S(1312) — 320, C(1312)

= 360, S(I412) - 300, C(1412) = 360, S(1213) - 350, C(i2i3) = 400, S(2oii) -

360, C(2oii) - 500, S(2ii3) - 260, C(2ii3) - 360, S(2212) -310, C(22i2) = 360,

S(2312) = 240, C(2312) = 360.

Step 2. Determine machine conflict operation

2a. Let A be the set of unscheduled operations, which are ready operations.

A = { 0(1011), O(2011)}-

2b. Select the operation = O(2oii)-

2c. Ocrojj; conflicts with 0(2oii}. Set f2(2oii) ~ {O(ioii. O(2oii]} and go to step 3.

Step 3. Apply MCE method to eliminate machine conflicts of all operations in f2(2oii).

The sequence obtained from MCE method is 2011-^ 1011. Select O(ioii) to

schedule (i.e., S(ioii) = 400, C(ioii) = 500). Set O(ioii) as scheduled operation.

Go to step 4.

Step 4. Since some of operations in the problem are not yet scheduled, then set all

unscheduled operation in an ideal solution while keeping unchanged the

schedule of operations O(ioii) (see Fig. 4.2 page 63)and go to step 2.

Step 2. Step 2. Determine machine conflict operation

2a. Let A be the set of unscheduled operations, which are ready operations.

A = { 0(1111), O(2011)}.

2b. Select the operation 0(r,ki)- - 0(2oii)-

2c. 0(1111) conflicts with 0(2oii). Set i7(2oii) ~ {^(iiii). O(2oii)} and go to step 3.

www.manaraa.com

132

Step 3. Apply MCE method to eliminate machine conflicts of all operations in f2(2oii).

The sequence obtained from MCE method is 2011-> 1111. Select 0(iiii) to

schedule (i.e., = 360, Cdm) = 400). Set 0(iiii) as scheduled operation.

Go to step 4.

Step 4. Since some operations in the problem are not yet scheduled, then set all

unscheduled operation in an ideal solution while keeping the schedule of

operations O(ioii) and 0(iiii) fixed as determined (see Fig. 4.2 page 63) and

go to step 2.

Step 2. Step 2. Determine machine conflict operation

2a. Let Z be the set of unscheduled operations, which are ready operations.

Z = { 0(2Q11), 0(1312). 0(U12)}-

2b. Select the operation Oojur ~ 0(2oii).

2c. 0(2011} conflicts with O(ioii) and (see Fig. 4.2, page 63). But O(ioii)

and 0(iiii) are scheduled operation in machine 1. Then, schedule 0(2qii)

on machine 1 at the starting time of 0(iiii) (i.e., C(2oii) = 360 and S(2oii) =

220). Set O(2oii) as a scheduled operation. Go to step 4.

Step 4. Since some operations in the problem are not yet scheduled, then set all

unscheduled operation as an ideal solution while keep the schedule of

operations O(ioii), 0(iiii), and O(2oii) fixed (see Fig. 4.3 page 64) and go to

step 2.

Step 2 to step 4 of algorithm V is repeated until all unscheduled operation are

scheduled as shown in Figure 4.5 (page 65), then the algorithm goes to step 5.

Step 5. Calculate total earliness cost of the solution as shown in Figure 4.5 (page

65). The total earliness cost = 9300 units.

Step 6. Set the current solution as shown in Figure 4.5 (page 65) to be the current

best solution, called R. Also set R'i ^R.

Step 7. Search for improved solution by evaluating the changing of the

www.manaraa.com

133

sequence position of movable operations in the current schedule. For each

operation, 0(ijMy ,in R, repeat the step 7a.

Let consider Oojuy = 0(1312) in Figure 4.5 (page 65).

7a. Determine the operations which are scheduled before 0(i3i2) in R and

can be moved to the position of 0(i3i2) • Let P(i3i2) be the set of

operations that can be moved to take the position of 0(i3i2) in the R, then

P(1312) = { 0(1412)} and 0(ijMr = 0(1412) in this example.

7b. Remove operation 0(1312} from R and set 0(1312) to be an unscheduled

operation.

7c. Let LTIME be the latest available time on machine after removing 0(i3i2)-

(i.e. LTIME = S(1312)= 360).

7d. Schedule Ofur2; into the previous position of 0(t3i2) in R, set C(ur2) = 360 ,

Sfui2) = 300. Set 0(ui2j3S a scheduled operation.

7e. Set all operations, Oojk/j. except 0(i4i2j which are previously scheduled

before 0(i3r2) in R (i.e., Q/w; <320) as unscheduled operations.

At this step, 0(1312}, 0(2212). 0(2312). and 0(2ii3) are set as unscheduled

operations.

7f. Repeat step1 - step5 to schedule the unscheduled operations (see

Figure C.13), called Ri', and keep Ri' in M.

7g. Reset R<^Ri'.

Repeat step 7 for the 0(ijuy = 0(2212) and 0(iiii) in Figure 4.5 (page 65). The

solutions also are kept in M. Since all the solutions in M are not better than the

solution as shown in Figure 4.5, then the solution as shown in Figure 4.5 is the best

solution. Then, the algorithm V stops.

www.manaraa.com

134

2113 1213

M,/C3
tzo 220

2312 2212 1312 1412

M/'C2
170 220

M/C

2011 1111 1011

360

0 100 200 300 400 500 600

Figure C.13 The schedule of example 4.1 after moving operation 1412 to
the position of operation 1312 in Figure 4.5

C.4 Algorithm VI illustration

To illustrate the steps of algorithm VI, consider example 4.2 in Chapter 4

(page 76), whose product structures and parameters are described as In Figure

4.7(page 77) and Table 4.2(page 76), respectively. The step by step of employing

algorithm VI to example 4.2 are described as follows:

Step 0. Set M = ^ and Pi = P2 = P3 = ^.

Step 1. Employ algorithm V to construct an initial schedule, called schedule R (see

Figure 4.9 page 79).

Step 2. Check feasibility of R. Since R is an infeasible solution (i.e., 8(3413) < 0),

go to step 3.

Step 3. While maintaining precedence relationship between operations, perform

www.manaraa.com

135

rightward shift in R until feasible solution is obtained (i.e., 8(3413) = 0). This

schedule is as shown in Figure 4.11 (page 80). Keep this solution as a

feasible solution in M, where M is a set of feasible schedules. Set schedule

back to R (see Fig. 4.9 page 79).

Step 4. Select the earliest starting time of all operations 8 in R (i.e., S^p/;-

<^inin^ Kyw)}). where B is the set of all operations in R. In this step, S^,yw;« <0.

Let G be the appropriate amount of tardiness. Set G = |Sc34f3j| = |-8| = 8 (see

Figure 4.9 page 79).

Step 5. For each product /, set the virtual due-date of product equal to the actual

due-date plus the appropriate amount of tardiness (i.e., virtual due-date

of product /= D/+ G). and repeat the following steps (5a-5c).

At this step there are three virtual due-date sets "68-50-40", "60-58-40", and

"60-50-48".

Lets consider "68-50-40" due-date set.

5a. Employ algorithm V to schedule the sequence of operations based on

"68-50-40" due-date set. The schedule is the same as shown in Figure

4.11 (page 80).

5b. It is a feasible solution. Then keeps this schedule in M,

5c. Reset the schedule back to R (see Fig. 4.9 page 79).

Repeat step 5 for the "60-50-48" and "60-58-40" due-date sets and keep the

feasible solutions in M. After repeating all due-date sets go to step 6.

Step 6. Select the best solution in M, called R', and set R = R'. In this example, the

best solution is the schedule from "68-50-40" due-date set. The solution is

selected to be the current best solution at this moment.

Step 7. Set M = <z>. For each product / in R (product 1, 2, and 3), do the following

steps (7a-7d).

Lets consider product 1.

7a. Remove all operations of product 1 from R (see Figure C.14).

7b. Let R* be the schedule after removing product 1 from R. For each

www.manaraa.com

3413
MC3l

MC2

MCI

I 2213 I I 2133 I

2122 I 2222 I 2012

3221 2111

• 2021

-r-
35

-r-
40

-P-
50

-7-
55

-P-
60

T-
65 0 5 10 15 20 25 30 35 40 45

Figure C.14 A schedule In example 4.2 after removing product 1 from the schedule In Figure 4.11.

www.manaraa.com

137

operation 0(ijuy in R*, do the steps (7b(1)-7b(2)).

7b(1). Shift 0(ijkiyio the right without violating precedence constraint.

Let Q(,jkiy be the amount that Of,yw; can be shifted to the right in

time. Since no operations in R* (see Figure C.I4) can be shifted

to the right without violating precedence constraint (i.e., Q(ijkiy =

0). Then the only member of Pi is 0 . Set Pi = {0}.

7b(2). Set the schedule back to R* (see Fig. 4.11 page 80).

7c. Let Pi(a) be a member of Pi. (i.e., Pi(a) = 0) do the following steps.

7c(1). Set virtual due-date of product 1 equal to the due-date of

product 1 plus Pi(a) (i.e., 68+0). Then the due-date set is still

"68-50-40".

7c(2) . Based on virtual "68-50-40" due-date set, the solution is still the

schedule shown in Figure 4.11.

7d. Reset the schedule back to R.

Step 7 is repeat for products 2 and 3 (i.e., P2 and P3). The solutions are kept

in M and go to step 8.

Step 8. Select the best solution in M, called R'. Since the best solution is as shown

in Figure 4.11 (page 80), then there is no improvement in step 7. Algorithm

VI stops.

www.manaraa.com

138

APPENDIX D

SENSITIVITY ANALYSIS

In this section, sensitivity analysis is performed on two problem types (i.e.,

minimizing earliness penalty and minimizing the sum of weighted earliness and

tardiness penalties) on single machine problems. In minimizing earliness penalty

problem, sensitivity analysis is studied in two different cases;

1) Variation in the percentage of conflicts in an ideal solution where the

percentage of conflict is defined as the percentage of processing times of operations

that overlap in an ideal solution. Mathematically, this is defined as

/ Overlapped processing times of operations in ideal solution inn
P&rCGfltSQG of conflicts —\ Total processing times of all operations inihe problem)

(i r .)
2) Variation of the ratio of average Y/to the number of jobs (i.e.,

£• where ^ = 7^)• This is the average ratio of earliness penalty and processing time to

the number of jobs.

In the problem of minimizing the sum of weighted earliness and tardiness

penalties, the sensitivity analysis is studied under four different cases;

1) Variation of the the percentage of conflicts in ideal solution.

fsj;]
2) Variation of the ratio of average V/to the number of jobs (i.e.,

V ̂where —~r)- This is the average ratio of earliness penalty and processing time

to the number of jobs.

fiz.l
3) Variation of the ratio of average Z, to the number of jobs (i.e.,

where Z- = ̂). This is the average ratio of tardiness penalty and processing time

to the number of jobs.

www.manaraa.com

139

4) Variation of the average of ratio of eariiness penalty and tardiness penalty

to the number of jobs (i.e., ——),

The sensitivity analysis is limited to the single machine problem because of

the fact that the optimality conditions derived for the single machine problem formed

the basis for the subsequent problem cases, including the assembly job shop

problems.

In this section, four examples involving different number of jobs (i.e., 15, 20,

25, 30 jobs) are randomly generated for the problem with eariiness cost minimization

and another four problems of different sizes in job count (i.e., 15, 20, 25, 30 jobs)

are randomly generated for the case of minimizing the sum of weighted eariiness

and tardiness cost.

In the case of the percentage of conflict variation, the due-dates of jobs are

varied while the other parameters are unchanged. Only the eariiness penalties are

varied In the case of average ratio of eariiness penalty and processing time

variation. Only the tardiness penalties are varied in the case of variation of the

average ratio of tardiness penalty and processing time. Both eariiness and tardiness

penalties are varied when the case of variation of average ratio of eariiness and

tardiness penalties is studied.

Tables D.I to D.8 and Figures D.I to D.8 show the sensitivity analysis of

problems with eariiness penalty minimization. Tables D.9 to D.24 and Fig. D.9 to

D.24 present the sensitivity analysis of problems with the sum of weighted eariiness

and tardiness penalty minimization.

In studying sensitivity analysis, an example was first randomly generated. It

means that all parameters were generated randomly. It consists of the processing

times, eariiness penalties, and due-dates of all jobs in single machine problem with

eariiness penalty minimization cases. For the cases of minimizing the sum of

weighted eariiness and tardiness penalties, the processing times, eariiness

penalties, tardiness penalties and due-dates of all jobs were randomly generated.

The sensitivity analysis for the case involving variation in the percentage of conflicts

www.manaraa.com

140

was studied by changing the due-dates of jobs in the problem while keeping the

other parameters (i.e., the processing time, earliness penalties and tardiness

penalties) unchanged. The changing of due-dates effects the percentage of conflicts

of jobs In an ideal solution. When the percentage of conflicts was changed

algorithms I and 11 were applied to solve the problem and the results obtained by the

two algorithms are compared to each other. This was the same for the case of

algorithms III and IV. For example, in Table D.1 and Figure D.1, an example of a 15

job size problem was randomly generated. Then the processing times and earliness

penalties of all jobs were fixed while the due-dates were changed. It generated a set

of percentage of conflicts, which ranged from 8% to 97%. Both algorithms I and II

were applied to solve this set of problems. It showed that both algorithms yielded the

same solution. In the 8% conflict case, algorithms I and II gave the same solution

with 40 in total cost. The remaining problem instances with changes in percentage of

job conflicts were similarly analyzed.

For the case involving the variation of the average ratio of eariiness penalty

f 1
and processing time to the number of jobs (i.e., where ^ =7"), only the

eariiness penalties of jobs were changed while the other parameters were fixed. For

example, in Table D.5 and Figure D.5, the range of average E/t was varied from 0.37

to 2.1. Algorithms I and II were applied to solve this set of problems. In the 0.37 E/t

case, both algorithms generated the same schedule with 277 in total cost.

For the case involving the variation of the average ratio of tardiness penalty

and processing time to the number of jobs (i.e., where), only the

tardiness penalties of jobs were changed while the other parameters were fixed. For

example, in Table D.17 and Figure D.17, the range of average W/t was varied from

1.7 to 4.32. Algorithms III and IV were applied to solve this set of problems. In the

1.7 W/t case, algorithm III generated a schedule with 267 in total cost, which was

worse than the schedule constructed by algorithm IV, which had 214 in total cost.

For the case involving the variation of the average ratio of eariiness penalty

www.manaraa.com

141

fi^)
and tardiness penalty to the number of jobs (i.e., ^), both earliness and

tardiness penalties were randomly changed while the other parameters were

unchanged. For example, in Table D.21 and Figure D.21, the range of average E/W

was varied from 0.31 to 0.84. Algorithms III and IV were applied to solve this set of

problems. In the 0.31 E/W case, algorithm III generated a schedule with 243 in total

cost, which was the same schedule generated by algorithm IV.

Table 0.1 Performance comparison of algorithms f & II relative to the
percentage of conflict in a 15 job problem with earliness penalty
minimization

% Conflict Alg.l Aig.ll
(total cost) (total cost)

8 40 40
30 180 174
43 186 186
47 310 310
69 1033 1033
97 2245 2245

2500 -

2000

01 o u
1500

a 1000
o

500

20 40 100 0 60 80

%of conflicts

Figure D.I. Performance comparison of algorithms I & II relative to the
percentage of conflict in a 15 job problem with earliness
penalty minimization

www.manaraa.com

142

Table D.2 Performance comparison of algorithms 1 & II relative to the
percentage of conflict in a 20 job problem with earliness penalty
minimization

% Conflict Alg. 1 Alg. II
(total cost) (total cost)

28 137 137
30 141 141
34 86 86
48 186 186
55 268 267
75 317 317
76 383 443
84 330 330
86 669 669
94 829 829

900 -

0
20 40 60 80 100

%of conflicts

Figure D.2. Performance comparison of algorithms I & 11 relative to
the percentage of conflict in a 20 job problem with
earliness penalty minimization

www.manaraa.com

143

Table D.3 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 25 job problem with earliness penalty
minimization

% Conflict Alg. I Alg. ii
(total cost) (total cost)

34 375 375
35 565 565
54 461 461
65 578 578
85 709 709
86 767 924
91 824 824

w o o
a
o

-Alg. I

.Alg. II

30 50 70

% of conflict

90

Figure D.3. Performance comparison of algorithms I & II relative
to the percentage of conflict in a 25 job problem with
earliness penalty minimization

www.manaraa.com

144

Table D.4 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 30 job problem with earliness penalty
minimization

% Conflict Alg. 1 Alg. II
(total cost) (total cost)

18 160 160
38 262 262
50 304 304
51 349 336
59 277 384
67 371 358
70 394 394
78 407 407
82 403 403

M o u
5 o

450 -

200 ^

-Alg. I
-Alg. II

10 30 50 70

*/• of conflict

90

Figure D.4 Performance comparison of algorithms I & II relative to the
percentage of conflict in a 30 job problem with earliness
penalty minimization

www.manaraa.com

145

Table D.5 Performance comparison of algorithms I & II relative to the ratio of
earliness penalty and processing time in a 15 job problem with
earliness penalty minimization

Average E/t Alg.l Alg. II
(total cost) (total cost)

0.37 277 277
0.52 346 337
0.71 522 516
0.91 687 641
1.11 811 873
1.29 1033 1033
1.55 1301 1301
1.73 1503 1503
1.91 1705 1705
2.10 1907 1907

2000 -

^ 1400

8 1200
« 1000
2 800

-Alg.l

0.5 1

Avg. Bt

1.5

Figure D.5 Performance comparison of algorithms I & 11 relative to the
ratio of earliness penalty and processing time in a 15 job
problem with earliness penalty minimization

www.manaraa.com

146

Table 0.6 Performance comparison of algorithms I & 11 relative to the ratio of
earliness penalty and processing time in a 20 job problem with
earliness penalty minimization

Avg. E/t Alg. 1 Alg. II
(total cost) (total cost)

0.34 46 46
0.43 77 77
0.46 56 56
0.64 86 86
0.72 77 77
1.09 164 164
1.32 200 200
1.52 230 230
1.75 266 266
1.97 302 302

350 ,

300 J

?50 ,

M O 200 ^
o
iS 150 -
o

100

50 -

0

-Alg. I

.Alg. II

0.5 1 1.5

Avg Bt

2.5

Figure 0.6 Performance comparison of algorithms I & II relative to the
ratio of earliness penalty and processing time in a 20 job
problem with earliness penalty minimization

www.manaraa.com

147

Table D.7 Performance comparison of algorithms I & II relative to the ratio of
earllness penalty and processing time in a 25 job problem with
earliness penalty minimization

Avg. E/t Alg.i Alg. II
(total cost) (total cost)

0.43 239 239
0.46 242 242
0.52 269 265
0.69 407 531
0.89 565 565
1.09 723 723
1.29 880 880
1.70 1192 1181
1.90 1314 1314

1400 -

1200

1000
0)
o o 800
3 o

600 .

400

200
1.5 2 0 0.5 1

Avg. E/t

Figure D.7 Performance comparison of algorithms I & 11 relative to the
ratio of earliness penalty and processing time in a 25 job
problem with earliness penalty minimization

www.manaraa.com

148

Table 0.8 Performance comparison of algorithms I & II relative to the ratio
of earliness penalty and processing time in a 30 job problem with
earliness penalty minimization

Avg. E/t Alg. 1 Alg. II
(total cost) (total cost)

0.50 94 94
0.60 112 112
0.80 148 148
0.86 160 160
1.01 184 184
1.27 233 233
1.47 270 270
1.89 344 344
2.30 416 416

450 -

0 0.5 1 1.5 2 2.5

Avg. E/t

Figure D.8. Performance comparison of algorithms I & II relative to the
ratio of earliness penalty and processing time in a 30 job
problem with earliness penalty minimization

www.manaraa.com

149

Table D.9 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 15 job problem with the sum of weighted
E/T penalty minimization

% Conflict Alg.lli Alg. IV
(total cost) (total cost)

32 389 389
39 362 362
42 375 375
45 371 371
51 780 780
58 580 567
76 612 612
84 685 687
87 620 606

20 40 60 80 100

*/• of conflict

Figure D.9. Performance comparison of algorithms III & IV relative to
the percentage of conflict in a 15 job problem with the sum
of weighted E/T penalty minimization

www.manaraa.com

150

Table D.10 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 20 job problem with the sum of
weighted E/T penalty minimization

% Conflict Alg.lll Alg. IV
(total cost) (total cost)

39 493 471
41 308 306
43 469 467
45 523 509
53 628 628
61 863 817
69 805 760
76 665 611
82 956 950
86 870 864

1000 .

200
30 50 70 90

% of conflict

Figure 0.10 Performance comparison of algorithms III & IV relative to
the percentage of conflict in a 20 job problem with the sum
of weighted E/T penalty minimization

www.manaraa.com

151

Table D.11 Performance comparison of algorithms III & IV relative to the
percentage of conflict in a 25 job problem with the sum of
weighted E/T penalty minimization

% Conflict Alg.lll Alg. IV
(total cost) (total cost)

0.24 330 330
0.35 463 451
0.36 417 417
0.43 338 338
0.58 1066 1049
0.67 1087 1062
0.78 1192 1117
0.88 1328 1330
0.91 1467 1467
0.94 1399 1399

% of conflict

Figure D.11 Performance comparison of algorithms III & IV relative to
the percentage of conflict in a 25 job problem with the
sum of weighted E/T penalty minimization

www.manaraa.com

152

Table D.12 Performance comparison of algorithms ill & IV relative to the
percentage of conflict in a 30 job problem with the sum of weighted
E/T penalty minimization

% Conflict Alg.lll Alg. IV
(total cost) (total cost)

18 160 160
38 262 262
50 304 304
51 349 336
59 277 384
67 371 358
70 394 394
78 407 407
82 403 403
86 426 426

% Conflict

Figure D.12 Performance comparison of algorithms III & IV relative to
the percentage of conflict in a 30 job problem with the sum
of weighted E/T penalty minimization

www.manaraa.com

153

Table D.13 Performance comparison of algorithms III & IV relative to the ratio
of earliness penalty and processing time in a 15 job problem with
the sum of weighted E/T penalty minimization

Avg Elt Alg. Ill
(total cost)

Alg.lV
(total cost)

0.28 339 339
0.34 341 341
0.42 343 343
0.53 345 345
0.68 382 350
0.96 356 356
1.23 362 362
1.52 368 368
1.80 374 374
2.10 380 380

g 365
" 360

0.5 1.5 2.5

Avg. Eft

Figure D.13 Performance comparison of algorithms III & IV relative to the
ratio of earliness penalty and processing time in a 15 job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

154

Table D.14 Performance comparison of algorithms III & IV relative to the
ratio of earliness penalty and processing time in a 20 job problem
with the sum of E/T penalty minimization

Avg E/t Alg. Ill
(total cost)

Alg.lV
(total cost)

0.33
0.63
0.76
1.19
1.44
1.71
1.99
2.30

306
344
367
426
452
497
542
587

301
344
351
426
450
496
542
587

total
cost 500

Avg. E/t

• AJg. I l l
-AJg.lV

Figure D.14 Performance comparison of algorithms III & IV relative to the
ratio of earliness penalty and processing time in a 20 job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

155

Table D.15 Performance comparison of algorithms III & IV relative to the ratio
of eariiness penalty and processing time in a 25 job problem with
the sum of E/T penalty minimization

Avg E/t Alg. Ill Alg.lV
(total cost) (total cost)

0.45 218 218
0.62 249 249
0.88 281 281
1.15 338 338
1.36 380 380
1.57 438 432
1.70 472 440
1.83 480 480
2.10 522 522
2.22 579 552

700

600

M 500
O
u 400
S
o 300

200

100

• Alg. Ill
-Alg.lV

0.5 1 1.5

Avg. E/t

2.5

Figure D.15 Performance comparison of algorithms III & IV relative to the
ratio of eariiness penalty and processing time in a 25 Job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

156

Table D.16 Performance comparison of algorithms III & IV relative to the ratio
of earliness penalty and processing time in a 30 job problem with
the sum of EfT penalty minimization

Avg EJt Alg. Ill Alg.lV
(total cost) (total cost)

0.36 302 302
0.48 325 325
0.72 383 383
0.90 438 438
0.95 435 435
1.21 500 500
1.45 558 558
1.68 793 613
1.92 861 871

«0 o u

o

Avg. Eli

Figure D.16 Performance comparison of algorithms III & IV relative to the
ratio of earliness penalty and processing time in a 30 job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

157

Table D.17 Performance comparison of algorithms III & IV relative to the ratio
of tardiness penalty and processing time in a 15 job problem with
the sum of E/T penalties minimization

Avg. W/t Alg. Ill Alg. IV
(total cost) (total cost)

1.70 267 214
1.97 337 357
2.24 271 267
2.53 301 301
3.07 332 332
3.19 362 362
3.60 392 392
3.75 422 422
4.04 452 452
4.32 482 482

500 .

" 350

Avg.W/t

.Aig.lll

-Alg.lV

Figure D.17 Performance comparison of algorithms III & IV relative to ratio
of tardiness penalty and processing time in a 15 job problem
with the sum of weighted E/T penalty minimization

www.manaraa.com

158

Table D.18 Performance comparison of algorithms III & IV relative to the ratio
of tardiness penalty and processing time in a 20 job problem with
the sum of E/T penalty minimization

Avg. W/t Alg. Ill Alg. IV
(total cost) (total cost)

1.34 313 313
1.67 328 328
1.87 342 342
2.14 363 363
2.42 384 384
2.70 405 405
2.93 426 426
3.49 468 468
3.77 483 489
4.04 510 510
4.31 531 531

550

500

450

400

350

300

2 3 4 5 1

Avg. W/t

Figure D.18 Performance comparison of algorithms III & IV relative to the
ratio of tardiness penalty and processing time in a 20 job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

159

Table D.19 Performance comparison of algorithms III & IV relative to the ratio
of tardiness penalty and processing time in a 25 job problem with
the sum of E/T penalty minimization

Avg. W/t Alg. Ill Alg. IV
(total cost) (total cost)

1.49 260 260
1.72 269 269
1.99 282 282
2.26 299 299
2.53 315 315
2.82 338 338
3.05 347 347
3.32 363 363
3.60 379 379
3.87 401 401

450 ,

<A O o
350 ^

S
o 300

250 ^

200

1 2 3 4 5

Avg. W/t

Figure D.19 Performance comparison of algorithms III & IV relative to the
ratio of tardiness penalty and processing time in a 25 job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

160

Table D.20 Performance comparison of algorithms III & IV relative to the ratio
of tardiness penalty and processing time in a 30 job problem with
the sum of E/T penalty minimization

Avg. W/t Alg. Ill Alg. IV
(total cost) (total cost)

1.09 288 288
1.31 310 310
1.53 333 333
2.58 412 412
2.82 435 435
2.84 435 438
3.06 458 458
3.30 481 481
3.53 504 504
3.80 527 527
4.03 550 550

600

500

S 400
3 o

300
"0

.Alg. Ill

-Alg. IV:

200

2 3

Avg. W/t

Figure D.20 Performance comparison of algorithms III & IV relative to the
ratio of tardiness penalty and processing time in a 30 job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

161

Table D.21 Performance comparison of algorithms III & IV relative to the ratio
of earliness penalty and tardiness penalty in a 15 job problem with
the sum of E/T penalty minimization

Avg. E/W Alg.111 Alg.IV
(total cost) (total cost)

0.31 243 243
0.33 231 231
0.37 240 240
0.40 228 228
0.47 250 250
0.51 247 247
0.59 269 269
0.65 257 257
0.79 277 277
0.84 264 264

total
cost

280 -

• K Alg.lll ,

-Q_AJg.lV;

0.2 0.4 0.6

Avg. E/W

0.8

Figure D.21 Performance comparison of algorithms III & IV relative to the
ratio of earliness penalty and tardiness penalty in a 15 job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

162

Table D.22 Performance comparison of algorithms III & IV relative to ratio of
earliness penalty and tardiness penalty in a 20 job problem with the
sum of E/T penalty minimization

Avg.E/W Alg.lll Alg.lV
(total cost) (total cost)

0.34 466 466
0.42 426 426
0.47 490 488
0.50 475 464
0.59 513 512
0.63 504 503
0.68 507 507
0.72 540 540
0.76 531 531
0.84 657 573

total
cost -Alg.lll

-Alg.lV

450

400

0.2 0.4 0.6

Avg. E/W

0.8

Figure D.22 Performance comparison of algorithms III & IV relative to the
ratio of earliness penalty and tardiness penalty in a 20 job
problem with the sum of weighted E/T penalty minimization

www.manaraa.com

163

Table D.23 Performance comparison of algorithms III & IV relative to the ratio
of earliness penalty and tardiness penalty in a 25 job problem with
the sum of E/T penalty minimization

Avg. E/W Alg.ill Alg.lV
(total cost) (total cost)

0.32 663 663
0.45 944 941
0.49 989 986
0.54 1151 1151
0.57 1146 1146
0.64 1141 1141
0.75 1300 1300
0.80 1348 1348
0.84 1480 1480
0.91 1500 1500

total
cost

1600 -

Avg. E/W

• Alg.lll

-Alg.lV

Figure D.23 Performance comparison of algorithms III & IV relative to the
ratio of earliness penalty and tardiness penalty in a 25 job
problem with the sum of weighted Err penalty minimization

www.manaraa.com

164

Table D.24 Performance comparison of algorithms III & IV relative to the ratio
of earliness penalty and tardiness penalty in a 30 job problem with
the sum of E/T penalty minimization

Avg.E/W Alg.lll Alg.lV
(total cost) (total cost)

0.32 418 418
0.35 388 388
0.37 386 386
0.40 401 401
0.44 366 366
0.48 317 317
0.50 359 359
0.53 321 321
0.60 334 334
0.90 288 288

Alg.lll
-B-Alg.lV

250

200
0 0.2 0.4 0.6 0.8 1

Avg. EM

Figure D.24. Performance comparison of algorithms III & IV relative to the
ratio of earliness penalty and tardiness penalty in a 30 job
problem with the sum of weighted E/T penalty minimization

total
cost 350

300

www.manaraa.com

165

D.1 Inferences drawn

D.1.1 Algorithms 1 and II

1. Based on the percentage of job conflicts for the scenarios involving the

minimization of earliness penalty, both algorithms I and II showed no clear difference

in performance. The solutions they produced followed the same general trend.

2. Similarly, the solutions produced by algorithms I and II followed the same

{^*0
general trend relative to changes in the ratio of for the earliness penalty

problem. In general, the relative perfonnance of the algorithms seems to be

insensitive to the changes in percentage of job conflicts or the ratio of for the

earliness penalty problem.

3. Although the relationship is not linear, the general trend is that as the

percentage of conflict increases, the total earliness penalty incurred for a given

problem also increases.

4. For the earliness penalty minimization problem, the total penalty cost

incurred for a problem tends to increase as the average ratio of E/t increases.

D.I.2 Algorithms III and IV

1. The solutions produced by algorithms III and IV followed the same

fi>;]
general trend relative to changes in percentage of job conflicts, the ratio of ,

the ratio of and the ratio of ' for the eariiness and tardiness penalty

problem. In general, the relative performance of the algorithms seems to be

insensitive to the changes in percentage of job conflicts or the ratio of or the

f"']
ratio of or the ratio of ^ for the eariiness and tardiness penalty problem.

www.manaraa.com

166

2. Although the relationship is not linear, the general trend is that as the

percentage of conflict increases, the total sum of earliness and tardiness penalty

incurred for a given problem also increases.

3. For the sum of weighted earliness and tardiness penalty minimization

problem, the total penalty cost incurred for a problem tends to increase as the

average ratio of E/t or W/t increases.

www.manaraa.com

167

REFERENCES

[1] Abdul-Razaq, T.S., and Potts, C.N.,"Dynamic Programming State-Space
Relaxation for Single-Machine Scheduling," Journal of the Operational
Research Society, Vol. 39, No. 2, pp. 141-152 (1988).

[2] Arkin, E.M., and Roundy, R.O., "Weighted-Tardiness Scheduling on Parallel
Machines with Proportional Weights," Operations Research. Vol. 30, No. 1,
pp. 64-81 (1991).

[3] Asano, M., and Ohta, H., "Single Machine Scheduling Using Dominance
Relation to Minimize Earliness Subject to Ready and Due Times,"
intemationalJoumal of Production Economics, Vol. 44, pp. 35-43 (1996).

[4] Bagchi, U., Sullivan, R.S., Chang, Y.L., "Minimize Mean Absolute Deviation
of Completion Times about a Common Due Date," Naval Research Logistics
Quarterly, Vol. 33, pp. 227-240 (1986).

[5] Baker, K., and Schrage, L., "Finding an Optimal Sequence by Dynamic
Programming: an extension to precedence-related tasks," Operations
Research, Vol. 26, pp. 111-120 (1978).

[6] Baker, K.R., and Scudder, G.D.,"Sequencing with Earliness and Tardiness
Penalties: A Review," Operations Research, Vol. 38, No. 1, pp. 22-36 (1990).

[7] Chand, S., and Schneeberger, H.,"Single Machine Scheduling to Minimize
Weighted Earliness Subject to No Tardy Jobs," European journal of
Operational Research, Vol. 34, pp. 221-230 (1988).

[8] Chang, P.C., and Lee, H.C., "A Greedy Heuristic for Bicriterion Single
Machine Scheduling Problems," Computers and Industrial Engineering, Vol.
22, No. 2, pp. 121-131 (1992).

[9] Chang, P.C., "A Branch and Bound Approach for Single Machine Scheduling
with Earliness and Tardiness Penalties," Computers and Mathematics with
Applications, Vol. 37, pp. 133-144 (1999).

[10] Chen, J.P., and Wilhelm, W.E.,"An Evaluation for Allocating Components to
Kits in Small Lot, Multi-Echelon Assembly Systems," IntemationalJoumal of
Production Research, Vol. 31, No. 12, pp. 2835-2856 (1993).

[11] Chen, J.F., and Wilhelm, W.E.,"Optimizing the Allocating of Components to
Kits in Small Lot, Multi-Echelon Assembly Systems," Naval Research
Logistics, Vol. 41, pp. 229-256 (1994).

www.manaraa.com

168

[12] Chhajed, D.,"A Fixed Interval Due-Date Scheduling Problem with Earliness
and Due-Date Costs," European Journal of Operational Research, Vol. 84,
pp. 385-401 (1995).

[13] Christofides, N., Mingozzi, A., Toth, P.,"State-Space Relaxation Procedures
for the Computation of Bounds to Routing Problems," Networks, Vol. 11, pp.
145-164 (1981).

[14] Davis, J.S., and Kanet, J.J.,"Single-Machine Scheduling with Early and
Tardy Completion Costs," Naval Research Logistics, Vol. 40, pp. 85-101
(1993).

[15] Doctor, S.R., Cavalier, T.M., and Egbelu, P.J.,"Scheduling for Machining and
Assembly in a Job-Shop Environment," IntemationalJoumal of Production
Research, Vol. 31, No. 6, pp. 1275-1297 (1993).

[16] Fisher, M.L., "A Dual Algorithm for the One-Machine Scheduling Problem,"
Mathematical Programming, Vol. 11, pp 229-251 (1976).

[17] Fry, T.D., Armstrong, R.D., and Blackstone, J.H.,"Minimizing Weighted
Absolute Deviation in Single Machine Scheduling," HE Transactions, Vol. 19
No. 4, pp. 445-450 (1987).

[18] Fry, T.D., Armstrong, R.D., and Rosen, L.D., "Single Machine Scheduling to
Minimize Mean Absolute Lateness: A Heuristic Solution," Computers &
Operations Research, Vol. 17, No. 1, pp. 105-112 (1990).

[19] Garey, M., Tarjan, R., and Wilfong, G.," One-Processor Scheduling with
Symmetric Eailiness and Tardiness Penalties," Mathematics of Operations
Research, Vol. 13, pp. 330-348 (1988).

[20] Hall, N.G., and Posner, M.E.,"Eariiness-Tardiness Scheduling Problems, I:
Weighted Deviation of Completion Times about a Common Due Date,"
Operations Research, Vol. 39, No. 5, pp.836-846 (1991).

[21] Hall, N.G., Kubiak, W., and Sethi, S.P.,"Earilness-Tardiness Scheduling
Problems, II; Deviation of Completion Times about a Restrictive Common
Due Date," Operations Research, Vol. 39, No. 5, pp.847-856 (1991).

[22] Kanet, J.,"Minimizing the Average Deviation of Job Completion Times about
a Common Due Date," Naval Research Logistics, Vol. 28, pp. 643-651
(1981).

www.manaraa.com

169

[23] Kao, E.P.C., and Queyranne, M.," On Dynamic Programming Methods for
Assembly Line Balancing, Operations Research, Vol. 30, pp. 375-390 (1982).

[24] Kim, Y.D., and Yano, C.A., "Minimizing Mean Tardiness and Earliness in
Single-Machine Scheduling Problems with Unequal Due Dates," Naval
Research Logistics, Vol. 41, pp. 913-933 (1994).

[25] Lawler, L.E.,"A Pseudopolynomial Algorithm for Sequencing Jobs to
Minimize Total Tardiness," Annuals of Discrete Mathematics, Vol. 1. pp. 331-
342 (1977).

[26] Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P., "Complexity of Machine
Scheduling Problems," Annuals of Discrete Mathematics, Vol. 1, pp. 343-362
(1977).

[27] McKoy, D.C., "Minimizing Production Flow Time in a Process and Assembly
Job Shop," Ph.D. thesis. Department of Industrial and Manufacturing
Engineering, Pennsylvania State University, university Park, Pennsylvania,
USA (1995).

[28] McKoy, D.C., and Egbelu, P.J., "Minimizing Production Flow Time in a
Process and Assembly Job Shop," Intemational Journal of Production
Research, Vol. 36, No. 8, pp. 2315-2332 (1998).

[29] McKoy, D.C., and Egbelu, P.J., "Production Scheduling in a Process and
Assembly Job Shop," Production Planning and Control. Vol. 10, No.1 pp. 76-
86 (1999).

[30] Nof, S.Y., Wilhelm, W.E., and Wamecke, H., Industrial assembly. Chapman
& Hall, London, UK (1997).

[31] Ow, P.S., and Morton, T.E.,The Single Machine Eariy/Tardy Problem,"
Management Science, Vol. 35, No. 2, pp. 177-191 (1989).

[32] Qi, X., and Tu, F.S.,"Scheduling a Single Machine to Minimize Eariiness
Penalties Subject to the SLK due-date Determination method," European
Joumal of Operational Research, Vol. 105, pp. 502-508 (1998).

[33] Ramudhin, A., and Marier, P.,"The Generalized Shifting Bottleneck
Procedure," European Joumal of Operational Research, Vol. 93, pp. 34-48
(1996).

[34] Smith, W.E., "Various Optimizers for Single Stage Production," Naval
Research Logistics Quarterly, Vol. 3, No. 1, pp. 56-66 (1956).

www.manaraa.com

170

[35] Sridharan, V.. and Zhou, Z.,"A Decision Theory Based Scheduling
Procedure for Single-machine Weighted Earliness and Tardiness Problems,"
European Journal of Operational Research, Vol. 94, pp. 292-301 (1996).

[36] Sundararaghavan, P., and Ahmed, M.,"Minimizing the Sum of Absolute
Lateness in Single-Machine and Muitimachine Scheduling," Naval Research
Logistics Quarterly, Vol. 31, pp. 325-333 (1984).

[37] Sung, C.S., and Joo, U.G.,"A Single Machine Scheduling Problem with
Earliness/Tardiness and Starting Time Penalties under a Common Due
Date," Computers & Operations Research, Vol. 19, No, 8, pp. 757-766
(1992).

[38] Szwarc, W.,"Adjacent Orderings in Single-Machine Scheduling with
Earliness and Tardiness Penalties," Naval Research Logistics, Vol. 40, pp.
229-243 (1993).

[39] Szwarc, W., and Liu, J.J.,"Weighted Tardiness Single Machine Scheduling
with Proportional Weights," Management Science, Vol. 39, No. 5, pp. 626-
632 (1993).

[40] Verma, S., and Dessouky, M.,"Singlie-Machine Scheduling of Unit-Time
Jobs with Earliness and Tardiness Penalties," Mathematics of Operations
Research, Vol. 23, No. 4, pp. 930-943 (1998).

[41] Yano, C.A., and Kim, Y.D.,"Algorithms for a Class of Single-Machine
Weighted Tardiness and Eariiness Problems," European Joumal of
Operational Research, Vol. 52, pp. 167-178 (1991).

www.manaraa.com

171

ACKNOWLEGMENTS

I would like to thank the many people who have supported and helped me to

complete this research. First I would like to express gratitude to my advisor Dr. Pius

J. Egbelu for his support, guidance, and encouragement throughout the process of

doing this work. This research would not have been possible without him. I would

also like to thank my committee members: Dr. Timothy Van Voorhis who provided

much help with formulating mathematical models. Dr. Douglas D. Gemmill, Dr. John

Wacker, and Dr. W. Robert Stephenson for their review of this work and many

helpful comments.

I would especially like to thank my roommate Nawapak Eua-anant, who not

only suggested to me how to construct the data structure for the research, but also

encouraged me with my graduate studies. I would also like to thank all of my friends

for their support.

Finally, I would like to thank my parents, my brother and sisters for their love,

support and encouragement.

	2000
	Scheduling based on earliness and tardiness criteria in assembly job shops
	Supachai Pathumnakul
	Recommended Citation

	

