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ABSTRACT 

In this research, the following four scheduling problems have been studied; 

(1) single machine problem with earliness cost minimization, (2) single machine 

problem with the sum of the weighted earliness and weighted tardiness cost 

minimization, (3) assembly job shop problem with earliness cost minimization, and 

(4) assembly job shop problem with the sum of weighted earliness and weighted 

tardiness cost minimization. Four mathematical models based on these four 

scheduling problems were developed in an effort to obtain optimal solutions. Six 

heuristic algorithms have been developed to solve the problems. The performances 

of the heuristic algorithms were demonstrated on some sample test problems. 

Quality of solutions and CPU time of solutions were the factors of interest. Several 

properties of optimal solutions for the single machine scheduling problem with the 

objective of minimizing the weighted earliness penalty have been identified In the 

research. Algorithms I, III, V, and VI were developed based on these identified 

properties while the algorithms II and IV were developed based on the tabu search 

concept. 

Algorithms I and 11 were developed to solve the first case (1) problem. The 

results indicate that these two algorithms are able to produce solutions close to 

optimal in small size problems. The results also show that algorithm I is relatively 

better than algorithm 11 in large size problem. 

Algorithms III and IV were developed to solve the second case (2) problem. 

Both algorithms obtained a small average deviation solutions (i.e.. less than 2%) 

from optimal in small size test problems. For all problems tested, the algorithm IV is 

the best algorithm for solving the eariiness/tardiness problems compared to 

algorithm III and the Ow & Morton algorithm. 

Algorithm V was developed to solve the third case (3) problem. It obtained an 

average deviation solutions less than 1% from the optimal. Algorithm VI was 

developed to solve the fourth case (4) problem. Algorithm VI obtained an average 

deviation solutions of 2.53% from the optimal. 
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In testing all developed heuristics, the computational requirements for solving 

the problems are less than 2 second in all test problems. 



www.manaraa.com

1 

CHAPTER 1 

INTRODUCTION 

In this research, the problem of scheduling jobs in an assembly job shop is 

addressed. An assembly job shop refers to a shop that involves both processing 

operations and assembly operations. It is assumed that each job has a product 

structure of components and subassemblies that assemble together to build up the 

end product. Each component or subassembly may need additional processing 

before mating with the other parts. The main objective of this research is to develop 

an algorithm to minimize the sum of weighted earliness and weighted tardiness for 

an assembly job shop problem. Additional to the assembly job shop problem, the 

following three other scheduling problems are also addressed in this research: 

(1) single machine problem with earliness cost minimization. 

(2) single machine problem with the sum of the weighted earliness and 

weighted tardiness cost minimization, 

(3) assembly job shop problem with earliness cost minimization. 

Six heuristic algorithms have been developed to solve the problems. 

Algorithms I and II were developed to solve the single machine problem with 

earliness cost minimization. Algorithms III and IV were developed to solve the single 

machine problem with the sum of the weighted earliness and weighted tardiness 

cost minimization. Algorithm V was developed to solve the assembly job shop 

problem with earliness cost minimization and Algorithm VI was developed to solve 

assembly job shop problem with the sum of weighted earliness and weighted 

tardiness cost minimization. 

These heuristic algorithms were applied to solve sample problems and the 

solutions obtained from the heuristic algorithms are found to compare very favorably 

to optimal solutions obtained from mathematical models. 
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1.1 Problem statement 

Given an assembly shop and a set of N final products Oobs) with due-dates, 

and each job requiring both assembly and processing operations, the objective is to 

schedule the jobs through the shop to minimize the sum of weighted earliness and 

tardiness penalties. Each product has a product structure consisting of components 

and subassemblies that require both machining and assembly operations. Each 

operation requires a specific machine from a set of M machines in the shop. There is 

an earliness cost for a product completed before its due-date. For assembly 

components, the earliness cost may be due to the time spent waiting for the 

corresponding mating component. Tardiness cost is incurred if a product is 

completed after its due date. The problem is to develop a schedule that minimizes 

the overall weighted cost due to both earliness and tardiness penalty. 

1.2 Research motivation 

Assembly shop is one of typical shops in industrial environment. As in the 

review of Nof et al. [30], it states that over 50% of total production time, and 20% of 

production cost in manufacturing are related to the assembly of manufactured 

products. One-third of a manufacturing company's labor is involved in assembly 

work, and 50% of direct labor costs in automotive industry are in assembly shops. 

These statistics indicate the importance of the assembly shop in real-worid industry. 

They also imply that a good production plan in an assembly job shop may lead to 

major cost and production time reduction, which are required in today's highly 

competitive environment. Although the importance of assembly shop is significant, 

there have been very few reported research that focused on assembly shop 

scheduling, in 1994, Ramaudin and Marier [33] reported that no benchmark problem 

for the assembly job shop has been published in the scheduling literature. A primary 

reason is the complexity of the problem itself. The assembly job shop is more 

complicated than the traditional job shop, since it contains the staging delays. 

Staging delays are the process in which one part incurs some delays to wait for the 



www.manaraa.com

3 

arrival of its mating parts. This condition does not exist in traditional job shop 

scheduling problems. 

With a few published papers on assembly job shop, most of them deal with 

such regular measures as mean flow time and completion time. To our knowledge, 

no published paper deals exactly with the minimization of eariiness and tardiness 

costs (E/T) in an assembly job shop. The E/T criterion is a nonregular performance 

measure. It is an NP-complete problem even in the single machine case [6]. Even 

though it is not widely studied by researchers when compared to regular measures, 

it is, however, considered as one of the important measures in Just in time (JIT) 

production systems. In a JIT environment, jobs that finish early must be stored in the 

warehouse until their due-dates. This increases the inventory holding cost. On the 

other hand, jobs that complete after their due-dates incur tardiness penalties, loss of 

customer goodwill, or loss of future sales. It is clearly obvious that both early 

completion and tardy completion are undesirable. 

Based on the above reasons, assembly job shop scheduling with eariiness 

and tardiness cost minimization becomes an interesting problem since it matches 

the real problems encountered in industry. 

1.3 Research objective 

In this research, the problem of minimizing the sum of weighted eariiness and 

weighted tardiness costs in an assembly job shop is studied. Because of the 

complexity of the problem as mentioned earlier, the optimal solution from exact 

algorithm Is likely to require excessive computational time in large size problems. 

The development of an exact optimal scheduling algorithm is impractical. This 

means that the development of an efficient heuristic algorithm is more practical. In 

this research, we propose the use of heuristic technique to search for the best 

solution. 

In our heuristics, the m machines job shop problem is decomposed into m 

separate single machine problems. We simply consider that the schedule of the 

assembly job shop is the union of sequences of jobs, with precedence constraints, 
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on each single machine in the shop. Under the proposed solution approach, 

heuristic algorithms for E/T single machine problems are first developed. Thereafter, 

the algorithms are extended to solve the assembly job shop problem. 

Two heuristic algorithms for minimizing weighted earliness cost subject to no 

tardy job. and two heuristic algorithms for minimizing the sum of weighted eariiness 

and weighted tardiness costs on single machine scheduling are developed In this 

research. The first algorithm (minimizing weighted eariiness cost) is based on the 

relationship between conflict jobs. Conflict jobs are the jobs whose processing times 

overiap each other on the same machine, if each job must be completed on its due-

date. The second algorithm is also for minimizing weighted eariiness cost. It is based 

on the tabu search heuristic. The third and fourth algorithms are for minimizing the 

sum of weighted eariiness and weighted tardiness penalties. The third algorithm is 

the extension of the first heuristic and employs the pairwise interchange method. 

The fourth algorithm is a tabu search heuristic. 

Two mathematical models for minimizing weighted eariiness, and minimizing 

the sum of weighted eariiness and weighted tardiness on a single machine problem 

are developed and used to obtain the optimal solutions for small size problems. The 

Lindo (Commercial Software) is applied to solve the mathematical models. Heuristic 

algorithms are latter developed to solve the more general forms of the problem. 

Sample problems are solved and the results of the solutions obtained by the 

heuristic and exact procedures are compared 

The experience gained in solving the single machine problem was employed 

in developing the heuristic algorithms for the general problem of minimizing the 

weighted eariiness penalty, and the sum of weighted eariiness and weighted 

tardiness penalties in assembly shops involving multiple machines. The 

performances of the heuristic algorithms were compared with results obtained from 

exact procedure for some small size sample problems. 
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1.4 The assembly job shop environment 

Each job in an assembly job shop consists of several components and 

subassemblies, with each component or subassembly requiring one or more 

operations. The operations can be both processing (machining) and assembly 

operations. The operations in an assembly job shop contain both serial and parallel 

operations (unlike the non-assembled, traditional, job shop where all operations are 

performed in series). For example, the operations of a component are performed 

serially, following the precedence relationships, while the operations of the another 

component belonging to the same assembly or subassembly are also performed 

serially, but in parallel with the former. As a result, scheduling in an assembly job 

shop requires the consideration of staging delays which are the delays of a 

component waiting for the other components to be mated together. The staging 

delay is different from the delays of components waiting for the availability of 

machines. The staging delay consideration underlines the complexity of an 

assembly job shop problem as compared to the non-assembled job shop. 

In this research, a job consists of a set of component parts, and a set of sub

assemblies parts. The components that go into sub-assemblies and the sub

assemblies themselves may require some machining tasks. A task refers to an 

operation performed on a job, a component part or a subassembly part at a specific 

machine or workstation. 

The product structure of a typical assembly product is as shown in Figure 1.1. 

The product stnjctures shown are taken from Mckoy and Egbelu [28,29 ]. 

Each product is represented as an inverted tree with the root of the tree at the 

top. For example, item P/o . for /= 1, 2 in Figure 1.1 is the root node of product /. 

There are two sets of nodes in the product structure. The first set of nodes labelled 

P,/ represent subassemblies and components. The label P,y is also referred to as the 

j-th subjob (assembly or component) of job /. If j - 0, then P/j represents the end 

product /, Pij, for j = 0, also represents the final assembly. Thus P/o = P, for all / 

and represents the end product /. The final products are constructed by mating the 

components and subassemblies in some fashion. The Py nodes in a product tree 
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are arranged in levels. The levels are labelled sequentially from 0 and counting 

upward (1, 2, 3,....) down the tree. For example, in Figure 1.1, there are four levels, 

labelled 0, 1, 2 and 3 for product 1. Node Pro is in level 0, while nodes P13 and Pu 

are in the second level. 

The second set of nodes are represented by four-tuples (Jjkm). These nodes 

represent the additional processing operations required by the subjob or P,y node 

before the subjob (i.e., Pr,) can be used as an assembly part of its parent node. For 

example, Pu may require drilling and milling operations before mating with P12 to 

form P10. The four-tuple label (ijkm) in this set of nodes refer to the k-th operation of 

subjob j of the final product / where the k-th operation is performed on machine m. 

1.5 Problem assumptions 

Certain assumptions are made in developing the models in the research. 

These assumptions include the following: 

a) all jobs are available at time zero, 

b) no preemption is allowed, 

c) machine breakdown is not considered, 

d) jobs have due dates. 

1.6 Contribution of the research 

Scheduling is one of the most important issues in production system. A good 

schedule can result in significant savings both in cost and production time. Even 

though a high degree of effort is required in generating a good schedule, the 

scheduling problem remains a persistent problem in production system. Poor 

schedules are the causes of high work-in-process inventory, job tardiness, and low 

machine utilization. The computational time required for generating optimal 

schedules for practical size assembly scheduling problems is high. The scheduling 

problem of minimizing the total cost due to earliness and tardiness is NP-complete 

[6]. Therefore, the use of exact solution procedure in solving large size problems is 

impractical. The development of efficient solution methodologies that generate 
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optimal or near-optimal solutions is attractive. Hence, the benefits derived from this 

proposed research include: 

• The development of heuristic algorithms for minimizing the weighted 

earliness penalty in a single machine problem. 

• The development of algorithms for minimizing the sum of weighted 

earliness and weighted tardiness penalties in a single machine problem. 

• The development of a solution methodology for minimizing the weighted 

earliness penalty for assembly job shop scheduling problem. 

• The development of a general-purpose algorithm for minimizing the sum 

of weighted eariiness and weighted tardiness penalties in both the 

assembly shop and job shop. 

1.7 Organization of the dissertation 

The remainder of this dissertation is organized into five chapters. In Chapter 

2, the literature related to this research are reviewed. Chapter 3 describes the 

model development in single machine problem. It includes the mathematical 

models for the problem of minimizing the weighted eariiness penalty in single 

machine scheduling and the problem of minimizing the sum of weighted earliness 

and weighted tardiness penalties in single machine scheduling. Heuristic algorithms 

for minimizing weighted eariiness penalty, and sum of weighted eariiness and 

weighted tardiness penalties in single machine scheduling problems are presented. 

Chapter 4 describes the model developments in assembly job shop problem. It 

includes the mathematical models for the problem of minimizing the weighted 

earliness penalty in assembly job shop scheduling and the problem of minimizing 

the sum of weighted eariiness and weighted tardiness penalties in assembly job 

shop scheduling. Heuristic algorithms for minimizing weighted eariiness penalty, 

and sum of weighted eariiness and weighted tardiness penalties in assembly job 

shop problems are presented in this chapter. 



www.manaraa.com

9 

Comparisons between solutions obtained from mathematical models and the 

heuristics in both single machine and assembly job shop problems are given in 

chapter 5. The conclusion on this research is drawn in the Chapter 6. 

The proof of the propositions, the algorithm illustrations, and sensitivity study 

are also presented in the Appendices of this dissertation. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter reviews previous research work on production scheduling in the 

single machine problem, general job shop problem, and the assembly job shop 

problem. It focuses on the scheduling methods developed for minimizing earliness 

and tardiness costs. 

2.1 Single machine problem 

The majority of published papers on the scheduling models with earliness and 

tardiness (E/T) penalties deals with the single machine model. These papers can be 

classified into three groups. The first group deals only with the earliness cost. The 

second group focuses on the tardiness cost, and the last group considers both 

earliness and tardiness costs at the same time. 

2.1.1 Earliness cost model 

The allowance for no tardy jobs is the basic assumption in the papers that 

deal only with earliness cost. It is assumed that every job must be completed before 

or on the due-date, and leave the shop on the due-date. If a job is completed before 

its due date, then inventory holding cost is incurred. Chand and Schneeberger [7] 

assume that all jobs are available at time zero, and that the due-date for each job is 

known. They studied two types of problems which they referred to as the Weighted 

Earliness Problem (WE-Problem), and the Constrainted Weighted Earliness Problem 

(CWE-Problem). In WE-Problem, machine idle time can be inserted, but it is not 

permitted in CWE-Problem. The authors show that both the CWE-Problem and WE-

Problem are NP-hard, and optimal solutions can be obtained by a polynomial time 

algorithm in some specified situations. Two heuristics which are modified from 

Smith-heuristic [34] are given to solve the CWE-Problem and WE-Problem, 

respectively. A dynamic programming procedure was also developed for solving the 
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WE-Problem, but this method was not recommended for solving the problems that 

involve larger than 15 jobs. Chhajed [12] introduced a problem where N jobs are to 

be scheduled on a single machine and assigned to one of two due-dates which are 

given at equal interval. The due-date cost is considered additional to the earliness 

cost. The author assumes that customers prefer their jobs to be shipped as early as 

possible and thus there is a penalty for assigning jobs a late due-date. The problem 

is shown to be NP-hard. A method to obtain lower and upper bounds of the problem 

is also provided in the paper. In Asano and Ohta [3], not only is the due-time of each 

job known, but also the ready time is prespecified. That is, every job is available for 

processing on its ready time and cannot be processed earlier than this time. The 

authors propose an optimization algorithm using dominance relation for scheduling 

problem. The algorithm is based on the branch and bound approach. This method is 

applied to determine the optimal solution so as to minimize the total earliness cost 

with respect to the due date of each job. Their dominance relation is determined on 

the basis of earliest and latest completion times for unassigned jobs to specify the 

antecedent relation for jobs. Using this dominance relation in the branching 

operation, the problem size at each node can be reduced as small as possible. The 

strong lower bound of the algorithm is achieved by determining the minimum 

overlapping time for all unassigned jobs. 

Qi and Tu [32] have studied the scheduling of a single machine to minimize 

the eariiness penalty subject to no tardy jobs. The due-date in their problem is 

determined by the equal slack (SLK) method. Two cases of the problem are studied 

in the paper. The first case is the problem with equally weighted monotonous penalty 

objective function. The second one is the problem with weighted linear penalty 

objective function. For these two cases, two algorithms are respectively proposed by 

the authors, and optimal solutions can be obtained within polynomial time. 

2.1.2 Tardiness cost model 

This type of problem is the opposite of the problem of minimizing eariiness 

cost. Only the tardiness cost is considered. A set of jobs with given due-dates is 
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scheduled on a single machine. If a job is completed after its due-date, tardiness 

cost is Incurred. Lawler [25] and Lenstra et al. [26] have shown that the weighted 

tardiness problem is strongly NP-hard. A pseudopolynomial time algorithm was 

developed by Lawler [25] for weighted tardiness problems with agreeable weights. 

For example, the weight for / is less than the weight for j when processing time of / 

(P/) Is greater than the processing time of j  (Pj).  

Numerous algorithms involving both exact methods and heuristics have been 

developed to solve the weighted tardiness problem. A set of heuristics has been 

developed by Fisher [16]. Dynamic programming ([5], [23]) and Branch and bound 

algorithm [16] have also been proposed. 

Ow and Morton [31] presented a dispatch heuristic for scheduling weighted 

tardiness problem. In their dispatch method, whenever there are jobs waiting to be 

processed, and the machine is available, a waiting job is selected by using a priority 

function. The job that has the highest priority is scheduled next. Szwarc and Liu [39] 

have studied the weighted tardiness single machine scheduling problem with 

proportional weights. The tardiness penalties are proportional to the processing 

times. They present a two-stage decomposition method which is applied to solve the 

problem completely or reducing it to a much smaller problem, and then applying 

Arkin and Roundy's algorithm [2] to solve the small problem. 

2.1.3 Earliness and Tardiness costs (E/T) model 

In the review of Baker and Scudder [6], there are various types of 

assumptions made for the E/T problem. In some E/T problems, due-date is given, 

while In others the due-date is also a decision variable. In cases where due-date is a 

decision variable, both the due-date and job sequence are optimized simultaneously. 

Some have the same due-date for all jobs, which they call, common due-date, while 

others allow distinct due-dates. Some models contain common penalties, while 

others permit differences between the eariiness and tardiness penalties or unequal 

penalties among the jobs. With so many variations of the E/T model, there have 
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been many papers published in each category. Some of the interesting papers are 

reviewed in this research. 

In Kanet's paper [22], the problem of minimizing the total unweighted 

earliness and tardiness around a single common due-date is studied. The major 

assumption made in his work is that the due-date is not early enough to act as a 

constraint on the scheduling decision. This assumption is called "unrestrictively late". 

Under this assumption, a polynomial time algorithm for finding an optimal solution is 

developed and presented by the author. The Kanet's problem is generalized by 

Sundaraghavan and Ahmed [36] to scheduling with single machine and several 

identical parallel machines. Bagchi, Sullivan and Chang [4] also studied another 

generalization of Kanet's problem. They assume that all jobs have equal eariiness 

and tardiness penalties. The objective is to minimize the mean absolute deviation of 

job completion times about a common due date. Two more problems which are the 

generalization of Kanet's problem are considered by Hall and Posner [20], and Hall, 

et al. [21]. In [20], each job j has a weight or value wj, which is symmetric, but weight 

may not be equal between jobs. All jobs have the same due-date which is 

unrestrictively late (the due-date is not early enough to constraint the scheduling 

decision). The authors have proved that this problem is NP-complete. They 

described optimality conditions, and presented a dynamic programming algorithm, 

which is a pseudopolynomial time algorithm. This algorithm can solve the generated 

scheduling problem with 2000 jobs within two minutes of CPU time on a 

minicomputer. The Hall, et al. [21] paper is the companion paper of [20] but with 

some differences in assumptions. In [21], the authors consider the problem of 

minimizing the unweighted eariiness and tardiness of jobs with a common due-date 

that is eariy enough to constraint the scheduling decision. Similar to [20], the paper 

contains a description of several optimality conditions of the problem. The problem 

has been proved to be NP-complete in the ordinary sense. Finally, a 

pseudopolynomial algorithm based on dynamic programming is proposed. The 

algorithm can solve problem of up to 1000 jobs in less than three minutes of CPU 

time on a minicomputer. 
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When the E/T model has jobs with different due-dates, it makes the problem 

more difficult to determine a minimum cost schedule than the model with common 

job due-dates. However, the problem turns out to be simpler, if the due-dates are 

also treated as decision variables [6]. The E/T problem on a single machine with 

distinct due-dates has been proved to be NP-complete by Garey et al. [19]. Recent 

papers dealing with this model (E/T with jobs with distinct due-dates) are classified 

into two different categories. In one category, inserted machine idle time is allowed, 

while in the other, it is not allowed. 

Abul-Razaq and Potts [1] and Ow and Morton [31] in their papers addressed 

problems that do not allow insert idle time into schedule. In [1], the paper first 

presented a dynamic programming formulation for this problem, but the number of 

states required in this formulation is prohibitively large. Branch and bound is then 

explored for solving the problem instead. However, the dynamic programming state-

space relaxation technique which is developed by Christofides et al. [13] is used to 

obtain a lower bound for the branch and bound approach. In this method, a relaxed 

problem is obtained from a dynamic programming formulation by mapping the 

original state-space onto a smaller state-space and performing the recursion on this 

smaller state-space. Their computational results suggest that the solution time is 

large when dealing with problems containing more than 20 jobs. Discussions for 

improving the lower bound through the use of penalties and the use of state-space 

modifiers are also presented. Ow and Morton [31] propose a dispatch algorithm for 

the E/T problem with distinct due-dates, and no inserted machine idle times. In their 

dispatch algorithm, the priorities of unscheduled jobs are determined when the 

machine becomes available. The highest priority job is selected and schedule next. 

Their priority rule is based on the slack time of unscheduled jobs at the moment that 

the machine is available, and the value of k, where k is assigned by the scheduler. 

Large value of k is recommended, when job due-dates are close together and the 

processing time is not very long. On the other hand, when the due-dates are evenly 

distributed, k should be small. The authors also presented a new search method, 

Filtered Beam Search, which is modified from the Beam Search method used in 
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artificial intelligence. This search method produced very good solutions compared to 

their proposed dispatch algorithm. 

For problems that allow inserted machine idle time, there have been various 

proposed algorithms reported in the literature. Fry et al. [17] present heuristic for the 

E/T model with Inserted idle time. Their heuristic has two aspects, the sequencing of 

jobs and the insertion of idle time between jobs. The paper shows that the optimal 

idle time insertion between jobs can be achieved by solving a linear programming 

problem when a sequence is found. For locating the best sequence, a solution 

procedure based on the adjacent pairwise interchange (API) method is applied. This 

heuristic procedure is used to obtain a local optimal solution. Their computational 

results suggest that the solutions from this heuristic are within 2% of the optimal 

solutions. A heuristic based on adjacent pairwise interchange is also presented in 

Fry et al. [18], but it is used to minimize mean absolute lateness when job due-dates 

are not common and all jobs are unweighted. This heuristic is different from the 

heuristic of Fry et al. [17], One aspect is that the heuristic procedure of Fry et al. [17] 

evaluates only one local optimum as its solution, while the heuristic in Fry et al. [18] 

evaluates nine different local optima and selects the best as its solution. The results 

from their test problems show that this heuristic performs well, since the solutions 

from the heuristic are worse than the optimal solutions by 2.49% on the average. 

Another procedure that first locates an initial sequence, and then inserts idle time 

optimally into the schedule is presented by Chang and Lee [8]. They present a 

greedy heuristic for solving a bicriterion single machine scheduling problem. The 

bicriterion includes the minimization of the makespan and the total absolute 

deviation. The objective function is the linear combination of these two objectives. 

An optimal algorithm and a family of heuristic procedures are developed by 

Yano and Kim [41] for minimizing the sum of weighted earliness and weighted 

tardiness on a single machine when the weights are proportional to the processing 

time of jobs. Branch and bound procedure is applied to find the optimal solution of 

the problem. The authors derive some dominance criteria for eliminating some 

possible sequences that must not be considered in branch and bound search. 
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These dominance properties are also used as a basis for constructing good initial 

solution for some of their heuristics. The heuristic solutions are improved by using 

the pairwise interchange method. The results of the tested problems indicate that the 

composite heuristic which combines several sorting procedures and a simple 

pairwise interchange method is a very good method compared to the solutions from 

branch and tx)und. 

Davis and Kanet [14] propose an algorithm called TIMETABLER procedure 

for optimizing the timing when a sequence is given. The starting times of jobs in a 

given sequence are shifted to minimize sum of eariiness and tardiness costs in the 

TIMETABLER procedure. Szwarc [38] stated that the arrangement of adjacent jobs 

in an optimal schedule depends on a critical value of the start time, if we deal with 

E/T model on single machine with job independent penalties. For example, there 

exists a single critical value such that / precedes j (/ processing for this pair 

starts not eariier than tij and j i if processing begins before t,]. Due to this property, 

the branching scheme for the branch and bound procedure is developed. This 

scheme significantly reduces the search on 70 test problems containing 10 jobs 

each. To handle much larger problems, the authors suggest that this scheme should 

be used in any branch and bound procedure along with a good lower bound. Kim 

and Yano [24] consider a single machine scheduling problem with the objective of 

minimizing the mean tardiness and eariiness when the due-dates are distinct. They 

investigate some properties of optimal solutions. Based on these properties, a 

branch and bound algorithm and a heuristic are developed for solving the problem. 

Problems with 20 jobs can be optimally solved within a modest amount of CPU time 

by applying the properties. They observed that less widely dispersed due-dates 

leads to excessive computational time in branch and bound algorithm. Thus, the 

heuristic should be applied in that situation. Their results also show that some simple 

sorting heuristics can produce solutions within 30% of optimal solutions, and this gap 

can be reduced by using some simple improvement method such as the pairwise 

interchange. 
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A dynamic single machine scheduling problem where the objective is to 

minimize the sum of weighted tardiness and weighted earliness costs is considered 

by Sridharan and Zhou [35]. They develop a single-pass heuristic based on decision 

theory for generating a schedule with embedded idle times, instead of inserting idle 

time after constructing a sequence. Their heuristic works as a dispatch procedure. At 

each decision point, waiting jobs in the queue plus the jobs that will arrive soon are 

considered to determine the next job to be processed and at what time. Chang [9] 

proposed a branch and bound approach for single machine scheduling with 

unweighted eariiness and unweighted tardiness problem. In this approach, Chang 

first constructs an ideal JIT solution in which each job is completed at its due-date. If 

overlapping in processing time (i.e. processing conflict) among the jobs does not 

exist, the solution is optimal, but it rarely happens in practice. To deal with the 

overlapping problem, Chang provides some properties and theorems for eliminating 

processing time overiap among the jobs. Based on these properties and theorems, a 

bounding scheme for calculating different lower bounds for branch and bound 

procedure is presented. 

2.2 Job shop with assembly considerations 

As stated eariier, research in the deterministic production assembly job shop 

has been less extensive than that of typical job shops. One of the major reasons is 

that the assembly job shop contains both precedence relations between jobs as well 

as operations. It also deals with the staging delay that is the time that a part waits for 

the other parts to be mated together. 

According to the complexity of the problem, the generation of optimal 

schedule requires excessive computational time. It is impractical to solve reasonably 

large size problems by using pure optimal scheduling methods. For this reason, 

most of researchers dealing with assembly job shop problems focus their efforts on 

developing efficient solution algorithms that generate near-optimal solutions with 

measurable performances [27]. 
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Chen and Wilhelm [10] present a heuristic for kitting problem in multi-echelon 

assembly system. The objective is to allocate on-hand stock and anticipate future 

deliveries to kits in order to minimize total cost which consists of job easiness, job 

tardiness, and in-process holding costs. They describe the kitting problem and 

compare the performance of their heuristic with two heuristics that are commonly 

used in industry. A decision variable in this problem is the day on which each kit is to 

be composed. Their heuristic consists of two stages. The first stage is to determine 

the sequence position in the final schedule of each job (single end product). This 

procedure is based on the slack time of each job and the earliest dispatching rule. 

The second stage is to determine the kitting days of subassemblies of each job 

based on the sequence position of jobs from the first stage. The computational 

results indicate that this heuristic outperforms the other two heuristics which are 

commonly used in industry. 

A heuristic algorithm for maximizing the machine utilization in an assembly 

job shop subject to satisfying job due-dates is developed by Doctor et al. [15]. Their 

heuristic is based on the construction of nondelay schedule. Idle time is allowed only 

when inserting idle time improves the performance measure. The heuristic first 

selects the operation which creates minimum slack time. The selected operation is 

the next to be scheduled on its required machine. However, some idle period may 

occur after scheduling the selected operation. Then the heuristic seeks one or more 

other operations to fill the imbedded idle time. The results indicate that this heuristic 

produces good solutions for the assembly jobs with no more than three levels of 

assemblies. 

Chen and Wilhelm [11] developed an approach for minimizing the total cost 

of allocating resources in multi-echelon assembly system. This kitting problem is the 

same problem presented in Chen and Wilhelm [10]. Their optimizing method bases 

on the Lagrangian relaxation. It decomposes the problem into subproblems. Several 

preprocessing steps are included in this optimizing method. This procedure also 

consists of dominance properties to enhance the efficiency of a specialized 

branching rule and a dynamic programming algorithm to solve the subproblems. The 
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results show that this approach outperforms OSL, a standard mathematical 

programming package. 

McKoy and Egbelu [28] propose a heuristic algorithm for minimizing the 

production flow time (makespan) in a job shop scheduling problem. They also 

constructed a mathematical model for the problem and solved some problem 

instances to obtain optimal solution. Heuristic is developed and tested against an 

exact solution procedure on some test problems. 

McKoy and Egbelu [29] consider the problem of scheduling jobs with both 

processing and assembly requirements in a job shop (assembly job shop). The 

objective is to minimize the production completion time. Both exact and heuristic 

algorithms are developed in this paper. Two production strategies are considered in 

the problem. The first strategy is that batches of identical parts generated from the 

bill of materials (BOMs) of the various end products are integrated together to form a 

supper batch. This strategy benefits from the minimization of the number of machine 

setups and machine setup times. In the second strategy, each batch is treated as 

individual job, no integration of batches of identical parts was considered. The 

performance of the heuristics based on these two strategies are above the optimal 

solution by 1.20% on the average. The paper indicates that the first strategy 

outperforms the second strategy when the setup times are low. On the other hand, 

there is no clear indication that one product strategy is better than the other when 

the setup times are moderate to large. 
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CHAPTER 3 

MODEL DEVELOPMENT IN SINGLE MACHINE PROBLEM 

In this chapter, the solution methodologies for solving the problem of 

minimizing weighted earliness penalty, and the sum of weighted earliness and 

weighted tardiness penalties in a single machine problem along with their 

mathematical models are presented. 

3.1 Single machine problem with earliness cost minimization 

The basic assumption for this problem is that job tardiness is not allowed. 

Only the earliness cost is considered. The problem is to schedule a set of jobs for 

minimizing the total weighted earliness cost. Jobs may have different processing 

times, distinct due-dates, and unequal weighted earliness cost. This problem is 

proved to be NP-hard [7]. The problem was first modeled mathematically. The 

mathematical formulation is as given in section 3.1.1. 

3.1.1 Problem formulation 

The mathematical model of the single machine problem with the objective of 

minimizing the weighted earliness penalty is as given below. 

Objective function 

A/mS(^,*(D,-C,)) (1) 
i=l 

Subject to 

Ci-Si = ti forVi (Processing time constraints) (2) 

Ci<Di forVi (No tardy job constraints) (3) 

Cj - C, + a(1 - X,j) > tj for Vi,j (Disjunctive constraints) (4) 

Ci - Cj aXij > tj for Vi,j (Disjunctive constraints) (5) 

Si>0  for Vi (6) 

Xij e{0, 1}. integer, for Vi (7) 



www.manaraa.com

21 

where N = number of jobs, 

Si = starting time of job i, 

C, = completion time of job i, 

ti = processing time of job i, 

D, = due-date of job i, 

a - large positive number, 

E, = eartiness cost of job i (penalty per unit time of eariiness for job i), 

^ (1, if job i precedes job j. 

''  10. otherwise. 

Constraints (2) express that processing time of a job is equal to the difference 

between its starting time and its completion time. Constraints (3) guarantee that 

there is no tardy job in the system. Constraints {4J and (5) ensure that no two jobs 

can be processed simultaneously. Constraints (6) express that starting time of job i 

must be positive. Integrality requirement on Xr, is described in constraint (7). 

The presented mathematical model is impractical for solving reasonable size 

problem. Therefore, heuristic algorithms are developed for solving problems in this 

research. The first heuristic, algorithm I, is developed based on the local optimality 

condition (section 3.1.2). The second heuristic, algorithm II, is based on tabu search. 

3.1.2. Local optimality condition 

In this section, the local optimality conditions between two jobs are described. 

Under these conditions, the optimal ordering of any two jobs is derived. A heuristic 

for minimizing the weighted eariiness is developed in the next section based on the 

derived local optimality conditions. 
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Let /, j  denote jobs to be sequenced with processing time t j ,  due-dates Di, 

Dj,  and earliness cost per unit t ime, E,. Ej ,  respectively. If  D, > Di and t j  > Dj -  Di,  

then there exists an overlap in processing period between jobs / and j, if both jobs 

must be completed on their due-dates (see Fig. 3.1). 

j 

i 

Di Dj 

Figure 3.1 Jobs / and j overlap each other, if each completes on 
Its due date 

Proposition 1. For the case where jobs / and j are not possible to complete 

E E • 
exactly on their due-dates due to conflict, if — < — and £), < Dj , then the optimal 

^ j 

non-conflict ordering between jobs / and / is that job / precedes job j (/^) as shown 

in Fig. 3.2. 

Proof, (see Appendix A). 

j 

i 

Figure 3.2 Illustration of proposition 1 
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Proposition 2. For the case where — > —, D,< Dj, and both jobs / and j 

are not possible to complete exactly on their due-dates due to conflict, if 

t .E: -t:E: 
(D, -Dj) < , then the optimal non-conflict ordering between jobs / and j  is 

that job / precedes job j  ( i  j ) ,  otherwise j  i  (see Fig 3.3). 

'-+J 

Di Dj 

Di Dj 

Di Dj 

Figure 3.3 Illustration of proposition 2 

Proof, (see Appendix A). 

Proposition 3. For the case where jobs / and j are not possible to complete 

exactly on their due-dates due to conflict between jobs /, j and k, where k is already 

E E 
scheduled, If — < —, then the optimal non-conflict ordering between jobs / and j is 

that job / precedes job j. 

For example, in Fig. 3.4, suppose another job (i.e. job k) is scheduled for 

processing between the time period from B to B* and the due-dates of jobs / and j 

are in this time period (i.e. B < D,. Dj <B*). Then jobs / and j can not be processed 
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Ic 

J 

i 
1 
1 1 
1 
1 1 

i J 1 > 

B B Dj Dj B-Dj D, B* 

Figure 3.4 illustration of proposition 3 

between B to 8*. If — < —, then the optimal non-conflict ordering is that / j and 

the completion time of job j is at time B. 

Proof, (see Appendix A). 

Proposition 4. Consider the case where job k is already scheduled. Job j is 

not possible to complete exactly on its due-date due to conflict between jobs j and /, 

and jobs j and k. Job / is not possible to complete exactly on its due-date due to 

E E 
conflict between jobs / and j (see Fig. 3.5(a)). If — < —, then the optimal non-

conflict ordering between jobs / and j is that job / precedes job j (i -^J). 

For example, in Fig 3.5, suppose another job (i.e. job k) is scheduled for 

processing between the time period from B to B* and the due-date of job j is in this 

time period (i.e. B < Dj <B*). Thus job j can not be processed from time 8 to Dj. On 

E E 
the other hand, job / has conflict with job j, but not with job k. If ——, then the 

t. t : 

optimal non-conflict ordering is that / -*• j and the completion time of job j is at time 8. 
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1 

k i 1 j k 1 
j • 

1 
1 

i 

• 

1 
1 

• 

1 
1 

D, B Dj B* Dj B Dj B* 

(a) (b) 

Figure 3.5 Illustration of proposition 4 

Proof (see Appendix A). 

Proposition 5. Consider the case where job k is already scheduled. Job j is 

not possible to complete exactly on its due-date due to conflict between jobs j and /, 

and jobs j and k. Job / is not possible to complete exactly on its due-date due to 

E E 
conflict between jobs / and i (see Fig. 3.6(a)). If — >— and (D, — D, + T) < 

^ 'j 

where T is the lenght of time that job j can not be processed until its 
( E ,  + E j )  

due-date due to the conflict between jobs j and k, then the optimal non-conflict 

ordering between jobs / and j is that job / precedes job j (/ j). On the other hand, if 

E E t E —t E 
—i- > — and (Di - D; + T) > —-—-, then the optimal non-conflict ordering 

t j  (E,^E^) 

between jobs / and j is that job j precedes job / (j i). This proposition can be 

shown as in Fig 3.6. 
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In Figure 3.6, suppose that job k is already scheduled for processing between 

the time per iod from 8  to B*  and the due-date of  job j  is  In  this  t ime per iod ( i .e .  B <Dj  

< B*). Therefore job J can not be processed from B to Dj. On the other hand, job / 

£ E 
has conflict with job j, but not with job k. In this case, 7= D, - 6. If —i- > — and (Di 

t E —t E F E 
- Dj + T) < -— -— t h e n  /  j as in Fig. 3.6(b). If — > — and (Di - D; + T) > 

t E -t E 
, then j i as In Fig. 3.6(c). 

Proof, (see Appendix A) 

Figure 3.6 Illustration of proposition 5 
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3.1.3 Heuristics for the eariy problem 

As stated earlier, single machine problem with earliness cost minimization is 

NP-hard [7]. The computation time required for generating optimal schedules from 

mathematical programming procedure for practical size problems (i.e. larger than 15 

jobs) is high. Thus the mathematical programming procedure is not a practical 

approach for solving the problems. The development of efficient heuristics that 

generate optimal or near-optimal solutions is attractive. 

in this section, two heuristic algorithms are developed. The first one is based 

on the local optimality conditions derived in the previous section. The second one is 

a tabu search heuristic. In the first algorithm, each job is first scheduled with its 

completion time corresponding to its due-date, called ideal solution. If there is no 

conflict between jobs, the solution is optimal, otherwise it is an infeasible solution. 

Any conflict between a pair of jobs can be eliminated by applying the local optimality 

conditions presented in section 3.1.2. The conflict elimination algorithm starts from 

the latest conflict where the latest conflict is the conflict of jobs whose due dates are 

latter than the other conflict jobs in the system. After the latest conflict is eliminated, 

the algorithm moves backward to eliminate the next latest conflict which now 

becomes the new latest conflict in the system. The algorithm moves backward until 

all conflicts are eliminated. After eliminating all conflicts from the ideal solution, 

some imbedded idle periods of machine may occur. The algorithm will search for 

better solution by filling any job into the imbedded idle period. The due-date 

constraint of the job selected to fill in the machine idle period can not be violated. 

After placing a selected job into an imbedded idle period, jobs that are previously 

scheduled before the imbedded idle period may no longer be in the best sequence. 

For example, suppose the obtained sequence after eliminating all conflicts is 

1 and there is an imbedded idle time between jobs 2 and 5. Job 4 

can be partially placed in the imbedded period without violating its due-date and the 

new sequence now gives a lower cost than the sequence 

1 Now the best sequence is 1 ̂ 3-^2-^—>5-^. The sequence of 

jobs after job 4 (i.e. 5->6) is still the best sequence based on the propositions, since 
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the order is unchanged. However, the sequence of jobs before job 4 {\.e.1 -^3-^2) 

may not be the best sequence based on the propositions, since the sequence is 

changed. From this point of view, the schedule may be improved by searching for 

the best sequence for jobs 1, 2 and 3 based on the propositions. This can be done 

by pegging the sequence of job 4 and the jobs after job 4 (i.e. 4-^5-r*6J, and setting 

the jobs before job 4 (i.e. jobs 7, 2, 3) in an ideal schedule (set their completion 

times at their due-dates). Then, any conflict between jobs 1,2,3 occurring on the 

schedule Is eliminated by conflict elimination procedure again. 

In the second algorithm, the initial solution is simply constructed by 

scheduling jobs based on their due-dates. The eariiest due-date job is first 

scheduled as eariy as possible, then the second eariiest due-date job is scheduled 

as soon as the eariiest due-date job is completed, and so on. After all jobs are 

scheduled, each job is right shifted in time (i.e. postponed) to its due-dates as close 

as possible. The tabu search heuristic is applied to improve the initial sequence. In 

each tabu search iteration, all jobs are scheduled as eariy as possible, and then right 

shifted in time as in the initial solution. The algorithm is stopped when the stopping 

criteria is met. 

The following notations are used in both algorithms: 

3.1.3.1 Algorithm I development 

Input parameters 

A/ = Number of jobs. 

J = Set of jobs. 

/, / e J where /, j = 1,2,3 N. 

Ei = Eariiness cost of the job (cost/ unit time). 

ti = Processing time of the /"* job. 

D, = Due-date of the job. 
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System variables 

Z = Total earliness cost. 

Z'= Total earliness cost of the current best sequence. 

Zmj =Total earliness cost after assigning job j to fill the imbedded idle time interval m. 

k = The imbedded idle period on machine {i.e. k = 1,2,3,....). 

k'= The k*^ imbedded idle period on machine (i.e. k'=1, 2, 3, )  in the current best 

sequence. 

k^^ = The k^' imbedded idle period of machine (i.e. k-1. 2, 3, ) after assigning 

job j to fill the imbedded idle interval rrf^. 

k = Number of idle time intervals on machine. 

k '= Number of idle time intervals on machine in the current best sequence. 

k"'' = Number of idle time intervals on machine after assigning job j to fill the 

imbedded idle interval m^. 

S, = Starting time of the job. 

Si - Starting time of the /"* job in the current best sequence. 

SI"' =Starting time of the /"job after assigning job j to fill the imbedded idle time 

slot m. 

C, = Completion time of the ^ job. 

C'i = Completion time of the /"job in the current best sequence. 

Cp = Completion time of the /" job after assigning job j to fill the imbedded idle 

interval m. 

TIME = Latest available time on machine. 

Ak = (Lk.Uk), the /c'" interval of imbedded idle time on machine (e.g., Ai = (10,20), 

implies the first imbedded idle time on the machine occurs in the period 

between the 70'"time unit and the 20^ time unit). 

A'k = (L'k.U'k), the a'" interval of imbedded idle time on machine in the current best 

sequence. 
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the interval of imbedded idle time on machine after assigning job 

j to fill the imbedded idle interval m. 

U = The beginning time of the imbedded idle time period. 

Uk = The end time of the /(^ imbedded idle time period. 

a = Set of unscheduled jobs. 

;r = Set of scheduled jobs. 

(5 = Set of jobs that conflict with job / based on the ideal schedule. 

f ik = Set of jobs that are able to fill in Ak (i.e. j  e Pk, if y is a job scheduled before 

Ak and Dj > Lk). For example, a sequence is 1 -^3-^-^2—>5—>6 and there is an 

imbedded idle time between jobs 2 and 5. Thus Lk is at the completion time of 

job 2 and Uk is at the starting time of job 5. Let D4> Lk ,  then job 4 e Pk • Job 4 

is able to fill in Ak, the new schedule is 1 -^3-*2->4-^5—>6. In case where U > 

Uk- Lk, then it will cause a leftward shift of jobs 1, 3, 2 on the schedule. 

Algorithm I: 

Step 0. Initialization 

Oa. Set k = 0, cr=J, 7t~ <(),  TIME = max{D,}. 
iea 

Ob. For each ie a, set Y) = —. 

Step 1. Construct an ideal solution 

1 a. For each ie cr, set C, = D,, and S, = C, -1, . 

lb If any conflict exists between jobs (i.e. for each ie er. j e a - {i}, Sj<S i<C j  

or Sj<Ci<Cj), go to step2, otherwise stop. 

Step 2. Let P be the set of jobs ie a with D, > TIME (i.e., P = {Di> TIME, ie a}). 

Select job /* where Yr = }. If P = ^, then select job i*, which D,- = 

max{D^}. Break ties arbitrarily. 
k^a 

Step 3. Set C,- = min {TIME, D,'} , S,- = Cr -1,-. 

For each j e a - {i*}, if job j conflicts with job /*, set 5i-^ Si- + 0. 
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Step 4. If Yj < Wi-, for all j € Si', go to step 7 (follows propositions 1, 3, 4), otherwise 

go to step 5. 

Step 5. Select job j*e Si- where D/-= maxlZ)^} and Yi-. Break ties arbitrarily. 
keS,. 

Step 6. Find the relationship between i* and j* based on local optimality 

conditions. 

6a. Set Ti' = max { TIME - D,-, 0}. 

6b. For Yi' < Yj-, D,- > Dj-. and T,- > 0, 

if (Dj' - D,' +Ti') < —hlEjl (follows propositons 2 for 7 = 0, and 5 
(^i' ^/*) 

for T  >  0 ) ,  set and go to step 4, otherwise set C,- = D,-, 

Si- = Ci' - ti- (i.e., set job /* back to ideal form), i* = y*,^- = <p (i.e.. job j* is 

selected to schedule) and go to step 3. 

Step 7. Schedule job i* on machine 

7a. Check the idle time period. If the completion time of job 1* is not at TIME, 

then an imbedded idle time is incurred (i .e. If  C,- < TIME, set k -  k+1, Lk 

= Ci-, and Uk - TIME , Ak = (Lk , Uk)), otherwise there is no imbedded 

idle slot recorded by the algorithm. 

7b. Set TIME as the starting time of the job that is just scheduled (i.e., set 

TIME = Si-). 

7c. Delete job /* from the set of unscheduled jobs and add /* to the set of 

scheduled jobs (i.e. a-{i*} and k<~ {i*}). 

7d.lf all jobs are scheduled (|<t| = 0), then go to step 8, otherwise go back 

to step 2. 
N 

Step 8. Calculate total earliness cost, Z = ^/"E, *max(0 ,Dj  -C i ) ] .  
i=1 

Step 9. Consider the solution from step 8 as the best solution. Set S) = S,, 

Ci' = C, for / e J. Set k' = k, A'm- Am, and 2' = 2. 
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Step 10. Check existing imbedded idle periods. If there is no imbedded idle period 

(i.e. k' = 0) in the sequence, then the sequence is the best sequence 

obtained by the algorithm and go to step 14, otherwise go to step 11 since 

this sequence can be improved. 

Step 11. Search for the new lower cost sequence by assigning job to fill existing 

imbedded idle time periods. Set the best sequence (i.e. S), C) , and Z") be 

the current sequence, called R 

Repeat the following steps {11a to l ie) for any existing imbedded idle time 

interval, A'm . where m = 1. 2, Start with m = 1 and advance to the 

last interval k. 

11a. Set as the set of jobs that are scheduled before A'm and are able 

to fil l  in A'm ( i .e. je/3m. where C'j < L'm. and Dj >L'm)-

Explore filling the interval A'm by each job je pm by repeating the 

following steps {11b to lie) for each job jePm and starting each time 

with sequence R. 

11b. Assign joby to fill A'm (i.e. set Cy = min (Dj, U'm), S, = C, - ti). If 

starting time of job j after filling in A'm is less than L'm (i.e., the 

imbedded idle slot is not enough to fit job y), jobs scheduled 

before job j are leftward shifted. 

11 c. Reschedule all jobs that are scheduled before job j, since they may 

not longer be in the best sequence based on the propositions. Let A 

be the jobs scheduled before job j  ( i .e. A ~ { i  /  C, < Cj}).  Set all  ie A 

in an ideal forms (i.e. completion time at due-date) and consider all 

16 A as the unscheduled jobs by setting a = A. Set TIME = Sy and 

repeat step 2 to step 8 for all jobs in a. 

N 

11 d. Calculate Zmj = * max(O.Dj - C,)], where Zmj is the total 

eariiness cost after filling job j into the imbedded idle time A'm-

11 e. Call the sequence obtained by fil l ing pm by job j  as S{/3m, j)-
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Step 12. Select the best sequence SiJJmj') resulting from the exploration sequences 

obtained by trying to fill A'm in R by each job je fim (i e. Zmj- - min {Zmj})-
vmj 

step 13. If the total cost of the sequence obtained from step 12 is less than the cost 

of the current sequence (i.e. Zmj- < Z' ), then set the new obtained 

sequence as the best sequence (i.e. set Z' = Zmj- . S' = S^''' and C / = 

C^'lor all ie J, and k' = k"" ''and = for m = 1.2,...,k') and go to 

step 10 otherwise, go to step 14. 

Step 14. Output the best sequence determined. 

Numerical example 3.1 

To illustrate the steps of the algorithm, consider the problem described in 

Table 3.1 below. The objective is to minimize the total earliness penalty. A partial 

listing of the execution of the algorithmic steps follows. The complete solution 

procedure is presented algorithmically in Appendix C. 

Table 3.1 Numerical example 3.1 
Job 1 2 3 4 5 6 7 8 

ti 3 4 9 10 10 5 7 2 

D, 80 80 75 66 64 60 50 43 

E, 6 4 9 2 3 7 5 1 

Y, 2 1 1 0.2 0.3 1.4 0.71 0. 

Step 0. Initialization 

Oa. Set k=0, a= {1,2,3.4.5.6,7.8}. TIME - 80. 

Ob. For each ie a, set Si -  Y,- — (i.e.. Y'r=2, Y2=^, >^3=^, Y4=0.2, Y5=0.3, 

Y5=0.3, Y6=1.4, Y7=0.71. Y8=0.5). 

Step 1. Construct an ideal solution 

la. Ci = 80, Si = 77. Ca = 80. Sz - 76. C3 = 75. S3 = 66. C4 = 66. 84 = 56. 
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Cs = 64, Ss = 54, Cg = 60. Sg = 55, C7 = 50, S7 = 43, Cs = 43, Ss = 41 

(see Fig. 3.7). 

1 b. There are conflicts between jobs. Go to step 2. 

Step 2. Select i*  =1 (Di= TIME). 

50 66 75 

4243 S6 66 76 

1 
•-

54 64 

30 40 50 60 70 80 90 

Figure 3.7 Ideal solution for example 3.1 

Step 3. Set Ci = 80, Si = 77, and Si = {2} ( since D2 > Si). 

Step 4. Since Yi > Y2 , go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 77. Schedule job 1 at Ci = 80, Si = 77 (see Fig. 3.8). 

I 
77 80 

30 40 50 60 70 80 90 

Figure 3.8 Schedule job 1 of example 3.1 
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Step 7c. c7= {2.3.4,5.6.7.8}, ;r= {1} 

Step 7d. I cr i 0 go to step 2. 

Step 2. Select /* = 2(D2> TIME). 

Step 3. Set C2 — 77, S2 — 73, and — {3} 

Step 4. Since V2 = V3 , go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 73. Schedule job i* at C2 = 77, S2 = 73 (see Fig. 3.9). 

Step 7c. cr= {3.4.5,6,7.8}. ;r= 

Step 7d. I <t| 0 go to step 2. 

Algorithm is repeated until all jobs are scheduled. The sequence obtained for 

example 3.1 is shown in Fig. 3.10 

2 1 
«—•—• 
73 77 80 

30 40 50 60 70 80 90 

Figure 3.9 Schedule job 2 of example 3.1 
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2 I 
• • 

26 3638 45 55 60 64 73 77 80 

20 30 40 50 60 70 80 90 

Figure 3.10 A schedule for example 3.1 

After job 4 is scheduled, the problem contains |o| = 0. Then, the algorithm 

moves to step 8 for calculating the total weighted earliness cost. 

Step 8. Calculate total weighted earliness cost, Z = 147 unit cost. 

Step 9. Keep the solution from step 8 as the current best solution by setting 

S't = 77, C, = 80, S'2 = 73, C'2 = 77, S'3 = 64, C'3 = 73, S'4 = 26, CU = 36, 

S's = 45, C 5 = 55, S'e = 55, C'e = 60, S 7 = 38, C'7 = 45, S'a = 36, C'a = 38, 

K- = 1, A'i = (60, 64), Z' = 147. 

Step 10. There is an imbedded idle time, A'i = (60, 64), then go to step 11. 

Step 11a. Set as the set of jobs that are scheduled before zl'j and are able 

to fill in A'i , Pi = {5}. 

Step 11b. Assign job 5 to fill A'i = (60, 64). C5 = 64, S5 =54. Since 85 < 60, thus 

jobs 6,7,8 and 4 must be leftward shifted. 

Step 11c. Set jobs 6,7,8 and 4 in an ideal form, set cr= {4,6,7,8} and set TIME.  

= S5 (i.e. 54). The schedule is as shown in Fig.3.11. 
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43 50 56 

54 

66 

2 I 
• • 

64 73 77 80 

4313 55 60 

30 40 50 60 70 80 90 

Figure 3.11 Assign job 5 to fill in an imbedded idle time period A'i = (60, 64) 

Now, the algorithm repeats step 2 to step 8 for rescheduling jobs 4, 6, 7, 8. 

The final schedule is as shown in Fig. 3.12. The total cost of final schedule is 130 

which is less than the penalty before assigning job 5 to fill in A'i - (60, 64). Since the 

new schedule does not contain any imbedded idle period, the algorithm stops and 

the new schedule (Fig. 3.12) is the best schedule for example 3.1 obtained by 

algorithm I. 

4 8 7 6 5 3 2 1 
« • • » • • • • 
30 40 42 49 54 64 73 77 80 

30 40 50 60 70 80 90 

Figure 3.12 The best schedule for example 3.1 by algorithm I 
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3.1.3.2 Algorithm II development 

The following additional notations and definitions are used in the presentation 

of the algorithm. 

Definitions 

Tabu size: A parameter that designates the number of iterations that a pair of jobs is 

forbidden to be swapped. 

Aspiration criteria: A criteria that the tabu status is overridden when the swapping 

between the declared tabu pair of jobs yields a lower cost that is better 

than the lowest cost found so far (i.e., the current best solution). 

Input parameters 

Imax = Maximum number of iterations allowed in tabu search (stopping criteria). 

Hmax =The number of iterations allowed after the current best solution is found 

(stopping criteria). 

tabu_size = The number of iterations that a pair of jobs is forbidden to be swapped. 

System variables 

ETIME = Eariiest available time of machine. 

Rij = The sequence of jobs after swapping positions between job / and j. 

Z(Rij) = Total eariiness cost of the sequence after swapping positions between job / 

and j. 

Si(Rn) = Starting time of job / in sequence R„. 

Ci(Rn) = Completion time of job / in sequence Rn. 

y = Set of jobs which have been shifted to the right. 
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Algorithm II (Tabu search) 

Phase I Initial solution construction 

Step 0. Set a = J ,  n -  4 > .  E T I M E  =  0 ,  T I M E  = max{D, }. 
iea 

Set the tabu_size, nmax. and Imax- Set C, = D, for all / e J. 

Step 1. Select i *e  crwith the earliest due-date (i.e. Dr <Dj, a) .  Break ties 

arbitrarily. 

Step 2. Schedule /* with Sr = ETIME, C,- = Sr + tr. Set a<-cr- {!*}, tt <- k + {i*} 

and ETIME-Ci'. 

Step 3. If I cr j 0, go to step 1, otherwise go to step 4. 

Step 4. While maintaining feasibility, shift right in time each scheduled job to its due-

date as close as possible. 

4a. Set Y = ^. Let P be the set of jobs not yet shifted right in time. 

4b. For the last job I (i.e. max{Cy}), if the C, < D/, then shift job / to its due-

date (i.e. Ci = Di, Si = Ci - ti, TIME = S,), set y y + {9 and set 

P<-P-{i}, otherwise leave C, , S, unchanged and go to step 5. 

4c. For the next latest job / (i.e. max{Cy}), if the C, < D, and C, < TIME, set 

Ci = min(Di, TIME), S, = C, - f, .TIME = S,. set y <^y + and P<=- P- {!}. 

4d. Repeat step 4c until all jobs either are right shifted or left unchanged. 

Go to step 5. 
N 

Step 5. Calculate total earJiness cost, Z = ^[E, * max(O.Di -CJ7. 
i=i 

Step 6. Consider the solution from step 5 as the current best solution, by setting 

S'i = S,, Ci' = Ci for V/ e J, and setting Z' = Z. 
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Phase II Solution improvement (Tabu search). 

Step 7. Consider each job pair i,j where / , i, je J are a candidate pair to be 

swapped and place the pairs in a candidate list. 

Step 8. Evaluation of all job pairs in the candidate list. 

Repeat the following procedure for all candidate pairs i,j. where Rc is the 

current sequence. 

8a. Swap the positions of job /, yfrom current sequence Rc. to obtain the 

new sequence where the Rij is the sequence obtained from swapping 

jobs / and j. 

8b. Schedule all jobs on Rr, as early as possible (i.e. set the start time of 

the first job in R,j at time zero, and the starting time of the next job in % is 

at the completion time of the immediate preceding job in , and so on). 

If Rij is infeasible (i.e., some jobs are tardy), then discard Rg and go to 

step Be. 

8c. Employ step 4 to right shift in time each scheduled job in Rg to its due date 

as close as possible. 

8d. Calculate the total weighted earliness cost Z(Rii) of the R,y. 

8e. Swap the jobs /, j back to their original positions to obtain the current 

sequence Rc. 

Step 9. Select the best pair to be swapped. The sequence R,j that provides the 

lowest total weighted earliness cost is selected to be the new sequence Rn-

Step 10. If the new swapping pair is tabu pair and does not satisfy the aspiration 

criteria, it is disregarded and eliminated from the candidate list. Go to step 

8. If the new swapping pair is not a tabu pair or satisfies the aspiration 

criteria, go to step 11. 

Step 11 Set Rc = Rn- If the Z(Rn) < Z\ set Z'= ZfRJ, S',{Rc)= S,{Rn), 

C',{Rc) = Ci{Rn)^ox V/eJ. 

Step 12. Declare the tabu status for the recent swapped pair. 

Step 13. Check the stopping criteria. 

13a. If the Z'has not decreased for the last n^ax iterations, stop otherwise 
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go to step 13b. 

13b. If the maximum number of iterations is met go to step 14, otherwise 

go to step 7. 

Step 14. Output the best sequence determined. 

Numerical example 

In this section, the example problem 3.1 is solved using algorithm II. The 

algorithmic steps involved in solving the problem are as follows: 

Phase I Initial solution construction 

Step 0. Set <T= J, K-=- <f>. ETIME = 0, TIME - 80, tabu_size = 3, rimax ~ 5, Imax = 30. 

Step 1. Select i* = 8. 

Step 2. S8 = 0,Ca = 2.eT= {1,2.3,4,5,6,7} , re ={8} and ETIME = 2. 

Step 3. |tT| 0, go back to step 1. 

Step 1 to step 3 of the algorithm are repeated until all jobs are scheduled. 

After all jobs are scheduled, the schedule of jobs is as shown in Figure 3.13. Next, 

the algorithm proceeds to step 4. 

Step 4. While maintaining feasibility, shift right in time each scheduled job to its due-

date as close as possible (see Fig. 3.14). 

8 7 6 

• •-

0 2 9 14 24 

4 

34 

3 2 I 

43 47 50 

0 10 23 30 40 50 eo 

Figure 3.13 Initial solution of example 3.1 (i.e. jobs are scheduled as 

early as possible) 
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8 7 6 

» • • •-

3032 39 44 

5 

54 

4 

64 

2 I 
-• •—• 

73 77 80 

10 20 30 40 50 60 70 80 

Figure 3.14 Initial solution of example 3.1 after shifting right in time 

Step 5. Total earliness cost Z = 244. 

Step 6. Consider the solution from step 5 as the current best solution, by setting S'i 

= 77, C'r = 80, S'z = 73. C'z = 77. S'3 = 64. C'3 = 73. S4 = 54. C'4 = 64. S'5 = 

44. C's = 54. S'E = 39. C'E = 44. S'7 = 32, CV = 39. S'b = 30. C'g = 32, Z' = 244. 

Phase II Solution improvement (Tabu search) 

Step 7. Generate candidate pair list = {(1.2). (1.3), (1.4). (1.5). (1,6). (1.7). (1,8). 

(2.3). (2.4). (2.5). (2.6). (2.7). (2.8). (3.4). (3.5). (3.6). (3.7). (3.8). (4.5). (4.6). 

(4.7). (4.8). (5.6).(5.7). (5.8). (6.7). (6.8). (7.8)} 

Step 8. Evaluate all job pairs in the candidate list. 

8a Current sequence Rc = {8->7-^—^5->4-^3-^2-^1}. Swap the first job 

pair in the candidate list (1.2) to obtain the sequence Ri2 = 

{8->7-^-^5->4->3-^1 -^2). 

8b Schedule all jobs on R12 as early as possible. The schedule is as 

shown in Fig.3.15. 
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8c. While maintaining feasibility, shift right in time each scheduled job to its 

due-date as dose as possible. The schedule is shown as in Fig. 3.16, and 

the algorithm proceeds to step 8d. 

8d Total weighted earliness cost Zi2 = 254. 

» • 
0 2 14 24 34 43 46 50 

0 10 20 30 40 50 60 

Figure 3.15 Schedule of jobs on R12 (i.e. jobs are scheduled as early 
as possible) 

8 7 6 5 4 3 1 2 

• • • • • • » » • 
3032 39 44 54 64 73 76 80 

10 20 30 40 50 60 70 80 90 

Figure 3.16 Schedule of jobs on R12 after shifting right in time. 
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8e Swap the jobs /, j back to their original positions to obtain the current 

sequence Rc, where Rc = {8->7—^->5—>4->3^2-*1}. 

The algorithm repeats step 8 for the rest of the job pairs in the candidate list. 

Some job pairs are ignored after the algorithm finds that they create infeasible 

solutions. Infeasibilty occurs if at least a job is tardy. For example, the swapping of 

jobs 1 and 8 produces an infeasible solution. The schedule of Ria = 

(1 -^7-^-^5-^->3-*2->8} is infeasible and candidate the pair (1,8) is not 

considered in the algorithm, since job 8 is tardy (see Fig. 3.17). 

Step 9. Select the best pair to be swapped. The swapping between jobs 4 and 5, 

(I.e., (4,5)), provides the lowest cost among the other pairs in the candidate 

list, Z(R45) = 232. 

Set the new sequence Rn = R45 - {8-*7—>6^^4-*5—^3—^2—^1}. 

Step 10. Go to step 11, since the pair (4, 5) does not have tabu status. 

Step 11. Set Rc = Rn- Since the Z(R45) < Z', then set Z' = Z(R45)= 232, S', = Si(R45). 

C'i = C, (R45) for all /• e J. 

Step 12. Declare tabu status for the pair (4,5). Jobs 4 and 5 can not be swapped 

in the next three iterations, since the tabu size is three. 

Step 13. Since the stopping criteria is not yet met, the algorithm goes back to step 7. 

The algorithm continues to iterate until the stopping conditions is met. In this 

example, after the stopping criteria is met, the best sequence obtained is 

4->8-^7->6^5-^3-^2-^1. This corresponds to the same sequence obtained by 

algorithm I (see Fig. 3.12). 
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Tardyjob 

8 
• • 

10 15 25 35 44 48 50 

0 10 20 30 40 50 60 

Figure 3.17 Job 8 is tardy on 

3.2 Single machine problem with sum of the weighted earliness 
and weighted tardiness cost minimization 

In this section, the no tardy job constraint from the previous section is relaxed. 

This makes it possible for jobs to be tardy. The problem is to schedule a set of jobs 

to minimize the sum of weighted earliness and weighted tardiness costs. Jobs may 

have unequal weighted earliness and weighted tardiness penalties. The problem 

was first modeled mathematically. The mathematical formulation is as given in 

section 3.2.1 

3.2.1 Problem formulation 

The mathematical model of the single machine problem with the objective of 

minimizing the weighted sum of earliness and tardiness penalties is as given below 

Objective function 

Min. ^ (£,. • max(0, D, - C,-) + * max(0, C, - D-))  
( = 1 

This objective function can be transformed to the following function 

Min. (1) 
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Subject to 

Ci-Si  = ti  forVi  (Processing t ime constraints)  (2)  

for Vi, j (Disjunctive constraints) (3) 

Ci - Cj + aXij > ti for \/ i, j (Disjunctive constraints) (4) 

Ai > D, - Ci for V i (5) 

B, > Ci - Di for Vi (6) 

Ai>0 forVi (7) 

Bi>0 for Vi (8) 

Si>0 for Vi (9) 

Xi jG{0,  1}.  integer,  forVi  (10) 

where N = number of jobs, 

Si = starting time of job i, 

Ci = completion time of job i, 

ti = processing time of job i, 

Di = due-date of job i, 

Ai = the amount of time of job i completed before its due-date (i.e. Ai = Di -Ci). 

Bi = the amount of time of job i completed after its due-date (i.e. Bi = Ci-  Di) .  

a = large positive number, 

Ei = earliness cost of job i (cost/unit of time), 

Wi = tardiness cost of job i (cost/unit of time), 

^ _ j1, if job i precedes job j, 

'' [0, otherwise. 

Constraints (2) express that processing time of a job equals to the difference 

between its starting time and its completion time. Constraints (3) and (4) ensure that 

no two jobs can be processed simultaneously. Constraints (5), (6), (7), (8) linearize 

the nonlinear objective function of the problem. Constraints (9) express that starting 

time of job / must be positive. Integrality requirement on is described in (10). 
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3.2.2 Heuristics for early/tardy problem 

As stated earlier, mathematical programming procedure for solving the 

earliness/tardiness problem in single machine requires excessive computational time 

for solving practical size problems (i.e. more than 15 job problems). Thus the 

mathematical programming procedure is not a practical approach for solving the 

problem. The development of efficient heuristics that generate optimal or near-

optimal solutions is attractive. Two heuristic solution methodologies, algorithm III and 

algorithm IV are developed in this section. Heuristic algorithms III and IV are 

respectively the extension of heuristic algorithms I and II developed for minimizing 

the eariiness penalties in the previous sections. 

Algorithm ill Is extended from algorithm I. It is applied to problems that permit 

job tardiness. For example, if a set of jobs can not be scheduled without violating 

due-dates of some jobs, then it is impossible to apply algorithm I to such a problem 

since algorithm I requires that all jobs must be completed by their due-dates. In other 

words, algorithm I is applicable only to problems in which it is feasible to complete all 

jobs by their due-dates. Therefore, an algorithm is needed to solve the more 

general-purpose problem that involves both eariiness and tardiness in job 

completion times. In this research, algorithms III and IV are developed to solve 

problems that permit both eariiness and tardiness. 

In algorithm III, algorithm I is first employed to build a schedule backward 

without allowing for tardiness. However, the solution obtained from algorithm I may 

be infeasible (i.e., to complete all jobs by their due-dates, the algorithm could 

schedule some jobs to start before time zero). Of course, scheduling of any job 

before time zero yields infeasible solution. Shifting the schedule to the right in time to 

avoid starting any job before time would imply that some jobs will be tardy. To obtain 

a feasible solution, the entire sequence of jobs is shifted right in time until the 

starting time of the first job on the sequence is at time zero. Now, a feasible solution 

is obtained and some jobs are tardy. At this point, the algorithm starts to search for a 

set of jobs that should be tardy jobs by exploring the application of pairwise 

interchange method. The job pairs identified to yield the lowest cost after 
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interchanging is selected to be interchanged. The pairwise interchange method is 

employed until no more interchanges that can provide lower cost solution is found. 

Now a local optima is achieved and the obtained schedule consists of two sets of 

jobs, a set of tardy jobs and non-tardy jobs. After interchanging, the obtained 

schedule may no longer be the best schedule in terms of earliness cost minimization 

point of view, since jobs in the new schedule may not be ordered based on the 

propositions presented in section 3.1.2. Thus, the solution may be improved by 

applying algorithm I to reschedule all jobs again. 

To reapply algorithm I to the schedule obtained from painA^ise interchange, 

algorithm I can not be simply employed as before. Algorithm I is based on the due-

date of jobs. For this case, if real due-dates of all jobs are still used in algorithm I, 

then algorithm I will always generate an infeasible solution (i.e.. starting time of 

some jobs on the sequence may occur before time zero) which is the same as the 

infeasible schedule initially generated. To avoid infeasible solution, we need to set 

virtual due-dates for some jobs. We know that the schedule obtained from the 

pairwise interchange consists of a set of tardy jobs and a set of non-tardy jobs. We 

can set virtual due-dates for the tardy jobs at their completion time in the current 

schedule (i.e., the completion time on the schedule obtained from pairwise 

interchange). In other word, we have agreed to let this set of jobs to be tardy jobs. 

For the non- tardy jobs, the due-dates are left unchanged (i.e.. kept the same due 

date as contained in the original data). For example, suppose the real due-date of 

job /, D,, is 10, but after pairwise interchange, the job / is completed at time 12. We 

consider the time 12 as the virtual due-date, D*i. of job /. Based on the virtual due-

dates of the tardy jobs and the real due-dates of non-tardy jobs, a feasible schedule 

(i.e..starting time of the first job of the schedule is non-negative value) can be built 

by algorithm I. 

The new sequence obtained after reapplying algorithm I consists of two set of 

jobs, a set tardy jobs and a set of non-tardy jobs. Non-tardy jobs in the new schedule 

are now sequenced based on minimizing the earliness cost. If the new schedule 

obtained now is different from the schedule before reapplying algorithm I, pairwise 
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interchange method is again used to search for a new improved set of tardy jobs and 

then algorithm I is employed to reschedule for minimizing earliness cost of non -

tardy jobs. This algorithm is repeated until the criteria for termination are met. 

3.2.2.1 Algorithm III development 

The following additional variable and parameter definitions are provided for 

algorithm III. 

updated_cost: the total cost of the sequence in each iteration. 

/c = Iteration count. 

The algorithm appears as follows: 

Algorithm III 

Step 0. Employ algorithm I to generate a solution (i.e. the solution may be infeasible 

because the starting time of some jobs on the schedule may be negative 

value). Set iteration count /c = f. If the schedule is feasible, consider this 

solution as the current best solution, by setting S/ = S,, C/ = C, for /e J, and 

setting Z' = Z and set the current sequence, Rc, = the current best solution 

and go to step 2. Otherwise go to step 1. 

Step 1. Shift right in time the entire sequence until the starting time of the first job is 

at time zero. Consider this solution as the current best solution, by setting S / 

= S,, C'i = C, for ie J, and setting Z' = Z. Set the current sequence, Rc, = the 

current best solution. 

Step 2. Consider each job pair i, j where / ;>ij, and /, j e J \n the current best 

sequence, Rc. as a candidate pair to be interchanged. Set updated_cost = Z. 

Repeat the following procedure for all candidate job pairs /, j (i.e. evaluating 

all job pairs in the candidate list). 

2a. Interchange the positions of jobs /, J in the current sequence, Rc, to 

the new sequence R^ , where R,y is the sequence obtained from 

interchanging jobs / and j. 

2b. Calculate the sum of total weighted eariiness and weighted tardiness cost 
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Z fRj) =1; [E,-max(O.D, -C,)  + W, 'maxtO.C,-D,)J .  

2c. Reset the jobs /, j back to their orginal positions in Rc-

Step 3. Select the best job pair to be interchanged. The sequence Rij that provides 

the lowest cost is selected to be the new sequence R„. 

Step 4. 4a. If Z(Rn) < T, set Z' = Z(Rn), S) - S, (Rn). C, = C, (Rn) for i eJ . 

4b. If Z(Rn) < updatedjcost, set Rc = Rn. updated_cost - Z(R„) and delete 

the selected pair from the candidate list, and go to step 2 to search for a 

new job pairs to interchange to improve the solution. 

4c. If no interchange jobs yield lower cost, interchange yields a lower cost 

solution, go to step 5. 

Step 5. Set /c = /c + 1- Check the stopping criteria. If the maximum number of 

iterations is met (i.e. U = Imax), go to step 7. otherwise go to step 6. 

Step 6. Re-apply algorithm I to search for a new sequence. The objective of this 

step is to reschedule the non-tardy jobs in the schedule obtained from 

pairwise interchange to minimize earliness cost, since non-tardy jobs in the 

schedule obtained from pairwise interchange may no longer be ordered 

based on the propositions in section 3.1.2. 

6a. For job j, in Rc (i.e. schedule obtained from pairwise interchange), If its 

completion time is greater than its real due-date (i.e., tardiness jobs in 

schedule obtained from pairwise interchange), set its virtual due-date as 

its completion time (i.e. we agree to let this set of jobs to be tardy jobs). 

6b. For job j, in Rc{\.e. schedule obtained from painwise interchange), If its 

completion time is not greater than its real due-date (i.e. non-tardy jobs in 

schedule obtained from pairwise interchange), leave the due date 

unchanged (i.e. we agree to let this set of jobs to be non-tardy jobs). 

6c. Repeat algorithm I by using the due-dates obtained from 6a and 6b to 

reschedule all jobs to minimize the earliness cost based on the 

propositions in section 3.1.2. 

6d. Calculate the total cost of the new obtained sequence Rn . 
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6e. If Rc ^ Rn , set Rc = Rn. and updated_cost = Z(Rn) and go to step 2. 

Othen/vise (i.e., Rc = Rn) go to step 7. 

Step 7. Output the current best sequence Rc based on S'; and C) for all i e J. 

Numerical example 3.2 

The problem to be scheduled is as given in Table 3.2 below. 

Table 3.2 Numerical example 3.2 
Job 1 2 3 4 5 

_ _ _ _ _ _ 

El 10 8 5 5 4 

W, 17 10 7 10 10 

D, 20 20 17 16 10 

Step 0. Employ algorithm I to generate an infeasible solution (i.e. starting time of the 

some jobs on the schedule is negative value) as in Fig. 3.18. Set iteration 

count Ic = 1. 

Step 1. Shift right in time the entire schedule until the starting time of job 4 is 

at time zero (see Fig 3.19). The new schedule is set to be Rc ={ 4-»5-»2-»3 

->1}. At this point, job 1 is tardy. Consider this solution as the current best 

solution,S', = 17. C'i = 22, S'2 = 9. C'2 = 14, S'3 = 14. C'3 = 17. S'4 = 0. CU = 

6, S 5 = 6, C 5 = 9, and Z' = 131. 

4 5 2 3 
• • 
12 15 -2 

• 

4 
• 
7 

-• 

20 

-5 0 5 10 15 20 25 

Figure 3.18 An infeasible solution built by algorithm I in example 3.2 
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• • # • • • 
0 6 9 14 17 22 

0 5 10 15 20 25 

Figure 3.19 An initial schedule of example 3.2 (i.e. after right shifted in time) 

Step 2.Candidate list of job pairs to be considered for interchange = {(1.2). (1,3), 

(1.4). (1,5).(2,3),(2.4).(2.5).(3.4).(3.5).(4.5) }. 

Set updated_cost = 131. 

Evaluation of all job pairs in the candidate list. 

2a. Interchange the position of jobs land 2 in Rc. Job 2 is now tardy. 

2b. Calculate the total cost Z(Ri2) = 129. 

2c. Reset jobs 1 and 2 back to their previous positions in Rc (i.e., Rc= 

{ 4—^5—^2—^ —^V-

Step 2 is repeated for all job pairs in the candidate list. 

Step 3. Select pair (1,2) as the best pair to be interchanged, since it provides the 

lowest cost compared to the other pairs in the list (see Fig.3.20). 

Step 4. Since Z(Ri2) < Z\ set S'^ - 17. C'i = 22. S'2 = 9, C'2 = 14, S'3 = 14. C'3 = 17, 

SU = 0, C'4 = 6, S'S = 6, C'S - 9, and Z' = 129. 

Since Z(Ri2) < updated_cost, set Rc = R12. updatedjcost - 129 and eliminate 

(1,2) from the candidate list and go to step 2. 

Step 2. Evaluation of all job pairs Rc in the candidate list. 

2a. interchange the position of jobs 1, and 3 in Rc. Job 2 is still tardy. 

2b. Calculate the total cost Z(Ri3) = 124. 

2c. Reset jobs 1 and 3 back to the previous positions in Rc. 
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14 17 22 

0 5 10 15 20 25 

Figure 3.20 Schedule after interchanging between jobs 1 and 2 in example 3.2 

Step 2 is repeated for all job pairs in the candidate list. 

Step 3. Select pair (1,3) as the best pair to be interchanged, since it provides the 

lowest cost compared to the other pairs in the list (see Fig. 3.21). 

Step 4. Since Z(Ri3) < Z\ set S\ = 12, C'^ = 17, S'z - 17, C'z = 22, S'3 - 9, C'3 = 12, 

S4 = 0, C'4 = 6, S's = 6, C5 = 9, andZ' = 124. 

Since ZfRijJ < updated_cost,  set Rc = R13, updated_cost - 124 and eliminate 

(1,3) from the candidate list and go to step 3. 

4 5 3 1 2 
« • • • » • 
0 6 9 12 17 22 

0 5 10 15 20 25 

Figure 3.21 Schedule after interchanging between jobs 1 and 3 in example 3.2 

Step 2. Evaluate all job pairs Rc in the candidate list. 

Step 3. Select pair (4,5) as the best pair to be interchanged, since it provides the 

lowest cost compared to the other pairs in the list. 

Step 4. Since Z(R45) > updatedjcost, go to step 5. 
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Step 5. Set Ic = 2, and since U < Lax (stopping criteria), go to step 6 

Step 6. Re-apply algorithm I to search for a new improved sequence. 

6b. For job 2, (tardy job), set its virtual due-date as its completion time 

{D2 = 22). 

6a. For jobs 1,3,4,5 (early jobs), leave their due-dates unchanged. 

6c. Repeat algorithm I by using the due-dates obtained from 6a and 6b. 

In algorithm I, the ideal solution is as shown in Fig. 3.22. 

5 3 2 
• • • » • 

4 1 
• • » 

0 5 10 15 20 25 

Figure 3.22 Ideal solution for example 3.1 where virtual due-date of job 2 is 22 

The solution obtained after the application of algorithm I (see Fig. 3.23) is the 

same schedule as the one before applying algorithm I. This means the algorithm met 

the stopping criterion, so the algorithm moves to step 7. 

Step 7. Output the best sequence = {4->5-^-^1 ̂ 2} with S'i = 12, C'i -17. S'2 = 

17, C'z = 22, S'3 = 9. C'3 = 12, S'4 = 0, C'4 = 6, S's = 6, C's = 9, and Z' = 124. 

Algorithm IV is a slight modification of algorithm II. There are two differences 

between these two algorithms. First, the initial solution of algorithm IV is constructed 

using the dispatching rule of Ow and Morton [31]. Second, instead of discarding 

candidate pairs that create tardy jobs in step 8b of algorithm II, all candidate pairs 
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4 5 3 2 

0 
• 

6 
• 

9 12 17 
-• 

22 

0 5 10 15 20 25 

Figure 3.23 Final solution for example 3.2 by algorithm III 

3.2.2.2 Algorithm IV development 

including the ones that produce tardy jobs are considered in step 8b of 

algorithm IV. The Ow and Morton dispatching rule is presented in Appendix B. 

Algorithm IV (Tabu search for early/tardy problem). 

Algorithm IV is the same as algorithm II except for steps 0, and step Bb which 

are modified as follows 

Step 0. Set a= J, tt- (p. ETIME - 0, TIME - max{D, }. 
i^a 

Set the tabu_size, n„ax, and Imax-

Set C, = D, for all / J. 

Set the initial sequence by the Ow and Mortan algorithm (see Appendix B). 

Step 8b Schedule all jobs on Rij as early as possible (i.e.. set the start time of 

the first job in R,; at time zero, and the starting time of the next job in is at 

the completion time of the immediate preceding job in Rr, and so on). 
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Algorithm IV also provides the same solution as algorithm III for the numerical 

example 3.2. From the structure of the algorithms, algorithm IV has a drawback In 

that the two major parameters, k {Ow & Morton alg.) and tabujsize, will need to be 

specified by scheduler. There are no specific formulas for specifying their initial 

values. Guidelines do, however, exist. 
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CHAPTER 4 

MODEL DEVELOPMENT IN ASSEMBLY JOB SHOP PROBLEM 

In this chapter, the solution methodologies for solving the problem of 

minimizing weighted earliness penalty, and the sum of weighted earliness and 

weighted tardiness penalties in assembly job shop problem along with their 

mathematical models are presented. 

4.1 Assembly job shop problem with earliness cost minimization 

The basic assumption for this problem is that job tardiness is not allowed. 

Only the earliness cost is considered. The problem is to schedule a set of products 

with due-dates to minimize the total weighted earliness cost. Each job (product) has 

a product structure consisting of components and subassemblies that require both 

machining and assembly operations. Each operation requires a specific machine 

from a set of M machines in the shop. Operations may have different processing 

times. Each product has its own weighted earliness penalty and sub-jobs of products 

may have different inventory holding cost. Inventory holding cost for each sub-job 

may also be different in each stage of its operation. In other word, earliness cost is 

incurred when the final operation of a product is completed before the product's due-

date. Inventory holding cost is incurred, when a sub-job after an operation has to 

wait for the next operation. In this research, earliness penalty for a product is 

calculated based on the completion time of the final operation of the product while 

the inventory holding cost of a sub-job is equivalent to the earliness penalty of an 

operation, which is not the final operation. The problem was first modeled 

mathematically. An illustrative product structures is as shown in Figure 4.1. The 

mathematical formulation is as given in section 4.1.1. 
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Product I Product 2 

ijkl Operation required by subjob Pij, where k represents 
operation and I is the machine used for operation k. 

Subjob j of final job i. A subjob is a component or a 
subassembly in a product tree or bill of materials. 

Figure 4.1. Product structure for assembly products 
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4.1.1 Problem formulation. 

The mathematical model of the assembly job shop problem with the objective 

of minimizing the weighted earliness penalty is as given below. 

Objective function 

;V f J. ^ 
^ ^(iO k'm) * (^i ~ C'(jok-m) ^ ̂  UJ(kfl )m')  ~~ ^  Ujkm ) ) )  

1 = 1 I 7=0 i = I 
(1) 

Subject to 

C(ijkm) - S(ijkm) = t(ijkm) for V!, j, k (ProcBssing time constraints) (2) 

C(iok-m)^Di forVi.j.k (No tardy job constraints) (3) 

C(irk-m)-C(ijkm)+a(1 -X(^kmiTk-w)) ^ta-jrm) for Vi,j, k.i'j'.k' (Disjunctive constraints) (4) 

C(i jkmj-Caj'k'm) ccX(ijkm,Tk-m) ^t(iikm) for Vi. j.kJ'J'.k' (Disjunctive Constraints) (5) 

S(ij(k^i)m-) - C(ijkm) ^0 for vi.j.k (Precedence Constraints) (6) 

^(ijkm) ^ 0 for t/ /, j, k (7) 

X(ijkmrj-k-m) ^{0, 1}, Integer, for Vi.j.kfj'.k' (8) 

where N = number of products, 

Di = due-date of product i, 

J, = number of sub-jobs in product i. 

Kij = number of operations in sub-job (ij), 

(ij(k+1)m') = the parent-operation of operation (ijkm), 

S(ijkm) = Starting time of operation (ijkm), 

C(iok-m) = completion time of the final operation of product i, 

C(ijkm) = completion time of operation (ijkm), 

t(ijkm) = processing time of operation (ijkm), 

a = large positive number. 
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k* = The last operation of an end product, 

E(iok-m) = earliness cost of the final operation of product i (cost/unit time). 

E(ijkm) = earliness cost of operation (ijkm) ( cost/unit time). 

f / ,  i f  o p e r a t i o n  ( i j k m )  p r e c e d e s  o p e r a t i o n  ( i ' j ' k ' m )  i n  m a c h i n e  m .  

Otherwise. 

Constraints (2) express that processing time of an operation is equal to the 

dif ference between its start ing t ime and its completion t ime. Constraints (3)  

guarantee that there is no tardy job in the system. Constraints (4) and (5) ensure 

that no two operations can be processed simultaneously on the same machine. 

Constraints (6) are precedence constraints based on the product structure. 

Constraints (7) express that the starting time of operation (ijkm) must be positive, 

integrality requirement on X(r,knir,-k-m) is described in constraint (8). 

Since this problem is NP problem [27], then the presented mathematical 

model is impractical for solving reasonable size problem. Therefore, a heuristic 

algorithm is developed for solving the problem. A heuristic, called algorithm V, is the 

extension of algorithm I, the algorithm based on the local optimality condition for 

solving single machine problem with eariiness cost minimization. Algorithm V is 

described in section 4.1.2. 

4.1.2 Heuristic for assembly job shop problem with the weighted 
earliness cost minimization 

In solving the assembly job shop problem with weighted eariiness cost 

minimization, the computational time required for obtaining optimal solution from 

mathematical programming or exact method procedures for practical size problems 

Is excessive since the problem is NP [27]. Therefore, mathematical programming 

approach is not a practical way for solving the problem. The development of efficient 

heuristic that generates optimal or near-optimal solution is practical. 

In this section, a heuristic algorithm is developed. The algorithm, called 

algorithm V, is the extension of algorithm I. Algorithm V starts with the construction 
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of an ideal solution. An ideal solution is a solution in which the completion times of 

the final operations of all products are scheduled to occur or coincide with products' 

due-dates. The completion times of all preceding operations are made to coincide 

with the starting time of their parent-operations. As in Figure 4.1, assume that the 

due-date of product 1 is at the 500 ^ unit time and the processing time of operation 

1011 is 100 unit times. The starting time and completion time of operation 1011 in 

the ideal solution are at the 40(F and the 50(F* unit times, respectively. The 

completion times of the operations 1111 and 1213 are at the 40C^ unit times, which 

is the starting time of their parent-operation, operation 1011. Similarly, the 

completion times of operations 1312 and 1412 are at the starting time of operation 

1111 \n the ideal solution. 

If the generated ideal solution is feasible, then the solution is optimal. 

However, in the real world, machine conflicts between operations are always present 

in ideal solution. Any solution with machine conflicts between operations is 

infeasible. To obtain a feasible solution, algorithm V solves the multiple machine 

problem as a series of single machine problems. Algorithm V solves the problem 

backward. It starts with the unscheduled operation with the latest completion time in 

the ideal solution, called the latest operation. If the operation has no machine conflict 

with other operations, this operation is scheduled on the machine as it was in the 

ideal solution. Otherwise algorithm V will identify a set of ready operations that have 

conflict with the latest operation. A ready operation is an unscheduled operation, 

which is either the final operation of product or an operation whose successor 

operation has already been scheduled. Machine conflicts are resolved based on the 

local optimality conditions presented in section 3.1.2. After the conflicts are 

eliminated, the previously conflicting operation is marked as scheduled operations. 

Next, the algorithm moves backwards to select the new latest unscheduled 

operation and the process is repeated until all schedule conflicts in the problem are 

eliminated. For illustration, let us consider the following example, called example 4.1. 

Assume that products 1 and 2 are to be scheduled. The product structures of 

the products are as shown in Fig. 4.1. Due-dates of both products are at the 50(F 
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unit time and the processing times and weighted earliness penalty of the operations 

are as shown in Table 4.1. 

The ideal solution is constructed as shown in Fig. 4.2. There are three sets of 

machine conflict operations. The first set is on machine 1 and it involves operations 

2011, 1011, and 1111. The second set is on machine 2 and it consists of operations 

2312, 2212, 1312, and 1412. Operations 2113 and 1213 on machine 3 are members 

of the third set. Therefore, there are three decomposed single machine problems 

that need to be solved at this point. 

Table 4.1 Parameters of product 1 and product 2 in example 4.1 
Operations Earliness cost of final job and inventory Processing time 

holding cost of sub-jobs (E^) {t^) 

(unit cost/ unit time) (unit time) 

loTi 70 100 

1111 40 40 

1213 20 50 

1312 20 40 

1412 20 60 

2011 50 140 

2113 30 100 

2212 30 50 

2312 30 120 

in algorithm V, the single machine problem containing the operation with the 

latest completion time is first solved. For this example, machine one has the 

operations with the latest completion times. The machine conflicts of operations in 

this set are eliminated by applying the local optimality properties presented in 

section 3.1.2. At this point, the new sequence of operations on machine 1 is 

2011-^1111-^1011. Then, the new ideal solution is then formed based on the 

sequence of operations at machine 1 (see Fig. 4.3). That is, the next ideal solution is 

constructed by keeping the sequence on machine 1 unchanged after the conflict 

resolution. 



www.manaraa.com

63 

Now the latest machine conflict is on machine 2. It involves operations 1312 

and 1412. Again, the machine conflict between these two operations is eliminated 

based on the local optimality properties. The new sequence of operations at 

machine 2 is 1412—^1312 (see Fig. 4.4). The new ideal solution is then formed 

based on the sequence of operations on machine 2 and machine 1 (see Fig. 4.4). 

Finally, the latest conflict is, again, on machine 2 involving operations 2212 and 

2312. After eliminating the conflict, the new operation sequence for the last conflict is 

2312->2212. The current feasible solution is as shown in Fig. 4.5. 

M/C# 1, 

2113 
-• 

M/'C rr 3 260 360 1213 
• • 
350 400 

2312 

240 ,,,, 360 
WC U 2 * ——• 

1412 

300 ,,,, 360 
• # 
320 360 

2011 

360 nil 1011 soo 
• # » 

360 400 500 

150 250 350 450 550 

Figure 4.2 An ideal solution of the example 4.1 
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-WCS 120 

2II3 1213 
220 350 400 

M/'C2 tX) 
2312 

220 
2212 

« » 
170 220 

1412 
• • 
300 360 

1312 
• • 
320 360 

M/C 1 2011 1111 1011 

220 360 400 500 

80 180 280 380 480 

Figure 4.3 An ideal solution of example 4.1 after eliminating the latest conflict 

at machine 1 

M/C 43 
2113 1213 

CO 220 350 400 

M/C #2 

2312 1412 1312 

•DO 220 260 
2212 

« » 
170 220 

320 360 

WCUl 
2011 nil loii • • 

220 360 400 500 

0 100 200 300 400 500 

Figure 4.4 An ideal solution of example 4.1 after eliminating the latest conflict 

at machine 2 
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M'C 
2113 1213 

CO 220 350 400 

2312 
M'C #2 

2212 
• • 

1412 1312 
» • 

50 170 220 260 320 360 

2011 1111 1011 
• » • • 

#1 220 360 400 500 

0 100 200 300 400 500 

Figure 4.5 A feasible solution of the example 4.1 after eliminating all machine 

conflicts 

At this point, the solution obtained may not be the best solution, since the 

algorithm solved each decomposed problem independently. The best sequence in a 

decomposed problem may not be the best sequence for the entire problem. To 

overcome this drawback, a search for improved solution based on the conflict free 

schedule of Figure 4.5 is necessary. Algorithm V searches for improved solution by 

shifting or moving the moveable operations from one sequence position to another 

on a machine without violating schedule feasibility constraints. A movable operation 

is an operation that can be moved to a new sequence position from the current 

schedule without violating any precedence constraint. For example, in the current 

solution of example 4.1 (i.e. Fig. 4.5), operation 2011 can be moved to two new 

positions, either starting at time 260 and finishing at time 400, or starting at time 360 

and finishing at time 500. In other word, the current schedule "2011 -^1111 ->1011" 

on machine 1 can be changed to the schedule "1111-^2011-^1011" or 

"1111-^1011-^2011". Assume that operation 2011 is selected to move to new 

position (i.e., the position of operation 1111) to make new sequence 
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"1111->2011-^1011". After placing operation 2011 into the new position, other 

operations (i.e. 1111,1213, 2312) that preceeded operation 2011 in the 

sequence may no longer be in the best sequence. From this point of view, the 

schedule may be improved by searching for the best sequence of this set of 

operations. This can be done by pegging the sequence of the placed operation and 

the operations previously scheduled after the placed operation (i.e. 2011-^1011), 

and setting all operations which were scheduled before operation 2011 in an ideal 

schedule (see Figure 4.6). Then any machine conflict between operations occumng 

on the schedule is eliminated by using the optimaiity conditions as previously 

described. This search procedure is performed for all movable operations in the 

current schedule. After all movable operations are evaluated, the algonthm selects 

the lowest cost solution. If the best solution from the search is better than the current 

best solution, set that solution as the current best solution and repeat the search 

procedure again. Otherwise the algorithm stops. The entire steps of algorithm V can 

be described as in the following section. 

2113 1213 
M/C #3 • • • • 

•BO 260 350 400 

2312 . ^1312^ 

M/C #2 I *0 260 320 360 

,2212 , ,1412 , 
21} 260 311 360 

M/C#l i 

1111 
» • 

360 400 

2011 1011 

260 400 500 

-50 50 150 250 350 450 550 

Figure 4.6 An ideal solution of example 4.1 after changing the schedule of 

operation 2011 
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4.1.3 Algorithm V development 

Algorithm V employs a fundamental procedure, which is the method for 

eliminating machine conflicts in the single machine problem. This procedure is part 

of algorithm I presented in section 3.1.3.1. For ease of understanding, the 

elimination method is briefly described again in this section. 

4.1.3.1 Machine conflict elimination method in single machine 
problem (MCE) 

The following variables and parameters are used in the algorithm. 

Input parameters 

J = Set of operations. 

E(ijki) = Earliness cost of the operation (ijkt) (cost/unit time). 

t(ijki) = Processing time of the operation (ijkl). 

y(ijki) - -— •  

^(ijki) 

D, = Due-date of the product /. 

D(ijki) = Due-time of operation (ijkl). 

O(ijM) = Operation (ijkl). 

System variables 

S(ijki) = Starting time of the operation (ijkl). 

C(ijki) = Completion time of the operation (ijkl). 

a = Set of unscheduled operations. 

K - Set of scheduled operations. 

5{\]M) - Set of operations that conflict with operation (ijkl)base(i on the ideal schedule. 

TIME = Latest available time on machine. 

For any machine conflict that exists between operations, do the following 

procedure. 
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Step 0. Initialization 

Oa. Set cr= J, K- 6, TIME = max 

E 
Ob. For each 0(rju)e <y, set Sajki) = Yajki) - . 

hijU) 

Step1. If there are some final operations of products in J, set the due-times of the 

final operations to their end-products' due-date {i.e., D(ioii) = D,). For each 

O(ijki) €• J, which is not the final operation of products, set its due-time to the 

starting time of its parent-operation (i.e., where Oc,i(k-i)n 'S the 

parent-operation of O(ijki) in the product structure ). 

Step2. Let P be the set of operations (ijkl) e cr with D(ijki) ̂  TIME (i.e., P = {D(ijki)> 

TIME, 0(,jki)€ <7}). Select Ocijur where Yajuy - P- then 

select O(ijki)', that satisfy D(ijki)' = [^ajU)]- Break ties arbitrarily. 

Step 3. Set C(,jkiy = min {TIME, D(rikiy}, S(qkiy - C^juy - t(ijkiy-

For each O(ijki) e cr - {0(ijkiy}, if that conflicts with Ofiju)-, set S(ijkiy*- S^ijuy + 

{0(ijkj^. If there is no any job conflicts with 0(ijuy, go to step 7. 

Step 4. If Y(ijki) <Y(ijkiy, for all Oflju) e S(ijkiy, go to step 7, otherwise go to step 5 

in this step, it follows proposition 1, if D(ijkiy > D(ijki) for all 0(ijki) e . It 

follows the proposition 3, if 0(ijkiy and some of O(ijki) conflict to a scheduled 

operation. It follows the proposition 4, if only 0(ijkiy conflicts to a scheduled 

operation and some of 0(ijM) conflict to Ofrjkiy- Therefore, if Y(ijki) < Y(ijkiy , for 

all O(ijki) e S(ijkiy , is hold, 0(ijkiy is the best operation to be scheduled in any 

environment. The propositions 1, 3, 4 are presented in section 3.1.2 

Step 5. Select 0(ijkiy€ S^juy where D(ijkiy is the latest due-time among operations with 

Y(ijkiy> Y(ijkiy\n S(ijkiy- Break ties arbitrarily. 

Step 6. Find the relationship between 0^,yw;-and based on local optimality 

conditions. 

6a. Set T = max { TIME - Dfiju)-, 0}. 
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6b. For Y(ijM)' < yfijW' ^C'jwr ̂  ^(Hki)' f and T>0, 

if (D(ijuy - D(ijid)' +T) < —^('jidr^ojuy (foUow propositons 2 for 
(^djur ^^njuy) 

T = 0, and 5 for 7 > 0), set 5(r,kiy<- Sojuy - (0(rjki)} and go to step 4. 

Otherwise set Q/yw;- = D(ijid)\ S(ijkj)' = Q/yw;* - f^,ywr (i.e., set 0(ijuy back to 

ideal form), set = Oojuy .Sfijur = ^ (i.e., Oajkiy is the selected 

operation) and go to step 3. 

Step 7. Schedule Oaju)- on machine 

7a. Set TIME as the starting time of the , which is the just scheduled 

operation (i.e., set TIME - S(iju)'). 

7b. Delete 0(rjki)' from the set of unscheduled operations and add Ofijur to the 

set of scheduled operations (i.e. {O(ijki)'} and ;r ;r + {0(r,ki)'})-

7c. If all operations are scheduled (|(t| = 0), then stop, otherwise go 

to step 2. 

A step by step demonstration of the MCE algorithm is illustrated in Appendix C. 

4.1.3.2 Summary of algorithm V 

In this section, a step by step description of algorithm V is presented. This 

algorithm includes the MCE method, which was previously presented in section 

4.1.3.1 and a search method, which was briefly described in section 4.1.3. The 

followlngs are additional notations and definitions used in the presentation of 

algorithm V. 

System variables 

/I; Set of ready operations. 

r2(ijki): Set of ready operations, which conflict with 0(iju)-

M : Set of feasible solutions after applying the search method. 
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Definitions 

Ready Operation: An unscheduled operation, which is either the final operation of a 

product or the operation whose parent-operation was already 

scheduled. Backward scheduling is used. 

Movable operation: An operation that can be moved to a new sequence position 

from the current schedule without violating any precedence 

constraint. 

Algorithm V 

Step 0. Set M = ^. For each operation, set it as an unscheduled operation. 

Step 1. Construct an ideal solution. 

1a. For each unscheduled operation, if it is the final operation of a product, 

set the completion time of the operation at the product's due-date (i.e., 

C(ioii) = Di), otherwise set the completion time of the operation as the 

starting time of its parent-operation (i.e., Cfiju) = S(ip(k-i)n, where 0(ij-(k.i)n is 

the parent-operation of O(ijki) in the product structure ), Sf,yw; = Q,jk/; -

t(ijki), where the schedule is built in a backward manner. 

Step 2. Determine machine conflict operation 

2a. Let A be the set of unscheduled operations, which are ready operations. 

2b. For all O(ijkj) e A, select the operation, Octjuy, with the latest due-time {i.e., 

D(ijkir - Max{D(}jid)}, vO(ijU) e X). Break ties arbitrarily. 

2c. If the O(rjki)' has no conflict with both unscheduled and scheduled 

operations in ideal solution (note that 0(r]kiy can conflict with some 

unscheduled operations in an Ideal solution), schedule Ofijur on the 

machine as it was in the ideal solution, set 0(r,ki)' as a scheduled 

operation and go to step 4. 

If 0(rjki)' conflicts with scheduled operations but has no any conflict with 

unscheduled operations, schedule 0(ijM)'OU the machine at the starting 
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time of the earliest scheduled operation (i.e., set Q,ywr at S(rjkir 

where VO(ijki) e ;ron machine I), and set Ooiuy as 

a scheduled operation and go to step 4. 

If Of//>c/r conflicts with unscheduled operations (no matter that 

conflicts to scheduled operation or not), place all unscheduled Of,yw; e A, 

which conflict with O^y/w;- in , also add operation Ocijuy into Qc,juy 

(i.e., set n(ijkir = Ofrjuy + 0(ijki)' ) and go to step 3. In this step, all 

unscheduled operations which conflict to O(ijki)' and 0(ijuy itself must be 

carried to step 3 to eliminate machine conflicts by employing MCE 

method. 

Step 3. Apply MCE method to eliminate machine conflicts of all operations in 0(qki)-, 

Select the latest due-date operation of the sequence obtained from MCE 

method to schedule and set it as a scheduled operation. Set the remaining 

operations in as unscheduled operations and set /2^,ywr = 0, and go to 

step 4. 

Step 4. If all operations in the problem are scheduled, then go to step 5, otherwise 

set all unscheduled operations in an ideal solution while keeping unchanged 

the schedule of scheduled operations and go back to step 2. 

Step 5. Calculate total earliness cost of the solution obtained in Step 4. 

Step 6. Set the current solution obtained from step 4 to be the current best solution, 

, called R. Also set R'i <- R. 

Step 7. Search for improved solution by evaluating the changing of the 

sequence position of movable operations in the current schedule. For each 

operation, 0^,7w;',in R, repeat step 7a. 

7a. Determine the operations which are scheduled before Ofijuy in R {i.e., all 

operations whose Cfyw; and can be moved to the position of 

0(ijkiy (i.e., D(ijkj) > S(ijki)M(ijki)). Let Pojuy be the set of operations that can 

be moved to take the position of 0(ijuy in R. For each operation 

0(ijkir^ P(ijkiy. repeat the following steps (7b-7g). 

7b. Remove operation 0(ijkjy irom R and set 0(,jkiy^o be an unscheduled 
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operation. 

7c. Let LTIME be the latest available time on machine after removing 0^,kir-

(i.e. LTIME = S(rj-k-i) where 0^,7*7; is the operation scheduled right after 

0(ijkiy in R). 

7d. Schedule Ofykjy e P(ijkjy Into the previous position of Ofykiy in R. If the due-

time of O(ijki)' is greater than LTIME {i.e., Dfrju}' ^ LTIME), let C(r,ki)- = 

LTIME, otherwise set C(rikir— D(jjki). Set = Cpjio)'— t(ijki)' and let 0(^ki)' 

be a scheduled operation. 

7e. Set all operations, Oc/jw;. except which are previously scheduled 

before 0(jjuy in R (i.e., <S(rjkiy) and operation 0^,y«; as unscheduled 

operations. 

7f. Repeat step1 - step5 to schedule the unscheduled operations and keep 

the solution in M. 

7g. Reset R^R'i. 

Step 8. Select the best solution, R'in M, resulting from the search method in step 7. 

Step 9. If the total cost of R' is less than the total cost of R, set R' as the current best 

solution (i.e., R = R'), set M - ̂ and return to step 7, otherwise go to step 10. 

Step 10. Output the best schedule determined. 

A step by step illustration of algorithm V with example 4.1 is given in 

Appendix C. 

4.2 Assembly job shop problem with the sum of weighted earliness 
and tardiness cost minimization 

This problem is not significantly different from the problem of minimizing the 

weighted earliness penalty, which was presented in section 4.1. The only difference 

is that job tardiness is allowed in this problem. Thus, the tardiness cost of products 

must be included in the model. The problem is to schedule a set of products to 

minimize the sum of weighted earliness and tardiness penalties. Including the 

tardiness cost into the model increases the complexity of the problem. The problem 

is NP problem [6]. The optimal solutions can be obtained using exact procedures for 
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only small size problems. Therefore, heuristic algorithm is a practical approach to 

solving reasonable size problems. In this research, both mathematical and heuristic 

approaches are presented. 

The problem is first modeled mathematically in section 4.2.1 and the heuristic 

algorithm for finding solution to the problem is described in section 4.2.2 

4.2.1 Problem formulation 

The mathematical model of the assembly job shop problem with the objective 

of minimizing the sum of weighted eariiness and tardiness penalties is as given 

below. 

Objective function 

^  ^  ( t O k '  m )  *  ~ C (t O k ' m  )  ) )  ^  ( , O k ' m  J  ~  ^  t  ) )  

J ,  

^  ̂ (  i j k m  )  (  i j ' (  k * !  ) m ' )  ^  ( t j k m  >  ) )  

V  J = 0  k = l  

This objective function can be transformed to the following function 

N 

Min ^ 
1=1 

Min ̂  * A,) + (W, *B,) + 
/=/  V j=0 k=J 

(1) 

Subject to 

C(ijkm) - S(ijkm) = t(ijkw) for Vi.J.k (Processing time constraints) (2) 

C(irk-m) - C(ijkm)+a(1 - X(ijkm.iTk-m))^ tajrm) for Vi, j, k,i',j',k'(Disj'unctive constraints) (3) 

Cdjkrr,)-Caj-k'm) + aX(ijkmiwm) >t(ijkm) for Vi, j.k.i'.j'M' (Disjunctive Constraints) (4) 

S(ij-(k*i)m} - C(ijkm) ^ 0 for vi,j,k (Precedence Constraints) (5) 

S(ijkm)>0 forViJ.k (6) 

X(ijkmiTk-m) ^ { 0 ,  1 } ,  i n t e g e r .  f o r  V i j . k . i ' J ' . k '  ( 7 )  

A i >  Di-C(iOk-m) . forVi (8) 

Bj ^ C(iok'm) Di, for \/1 (9) 

A i > 0  for Vi (10) 

B i > 0  for Vi (11) 
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where N = number of products, 

D, = due-date of product i, 

J, = number of sub-jobs in product i. 

Kij = number of operations in sub-job (ij). 

(ij'(k+1)m') = the parent-operation of operation (ijkm), 

S(ij-km) = starting time of operation (ijkm), 

C(iok-m) - completion time of the final operation of product i. 

C(ijkm) = completion time of operation (ijkm), 

Ai = the amount of time of the final operation of product i completed before 

products's due-date (i.e. Ai = Di-Cowm))-

Bi = the amount of time of the final operation of product i completed after 

product's due-date (i.e. Bi = Q,fom; - Di). 

t(ijkm) = processing time of operation (ijkm), 

a = large positive number, 

E(iok-m) = earliness cost of the final operation of product i (cost/unit time). 

E(ijkm) = earliness cost of operation (ijkm) (cost/unit time). 

if operation (ijkm ) precedes operation (i'J'k'm ) in machine m, 
(ijkmi j km) otherwise. 

Constraints (2) express that processing time of an operation is equal to the 

difference between its starting time and its completion time. Constraints (3) and (4) 

ensure that no two operations can be processed simultaneously on the same 

machine. Constraints (5) are precedence constraints based on the product structure. 

Constraints (6) express that starting time of operation (ijkl) must be positive. 

Integrality requirement on Xajkuj-kv is described in constraint (7). Constraints (8). (9) 

(10) and (11) linearize the nonlinear objective function of the problem. 
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4.2.2 Heuristic for assembly job shop problem with the sum of 
weighted earliness and tardiness cost minimization 

in an assembly product, tardiness cost for an assembly product is incurred 

only when the end product is completed beyond its due-date. From this 

characteristic, we can consider the tardiness cost of the product on the final 

operation of the product. If the final operation of the product is completed beyond the 

product's due-date, the tardiness cost is incurred. The tardiness cost is not 

considered for the sub-jobs because they are not the final job. For example, in 

example 4.1, the tardiness costs are considered for the final operations of sub-jobs 

Pro, and P20. with final operations 1011 and 2011, respectively. If operation 1011 is 

completed after the due-date of product 1, then tardiness cost is incurred. It is the 

same for operation 2011 of product 2. For the other operations, Inventory cost is the 

only penalty that can be incurred. Inventory cost is incurred when an operation is 

completed and it has to wait for the next operation to begin. In this research, 

inventory holding cost is considered as earliness cost of operations, which are not 

the final operations. 

Based on the above characteristics of the problem, a possible solution 

strategy to take is to find a procedure that can identify the appropriate amount of 

tardiness for the last operation of each product and integrate the procedure with 

heuristic algorithm V, which was presented in section 4.1. In other word, the 

algorithm for minimizing earliness cost, algorithm V, should be employed to schedule 

the operations, which are not the final operations, after the appropriate amount of 

tardiness of each product is set or determined. 

The integrated algorithm, called algorithm VI developed for solving the 

problem is the extension of algorithm V. In algorithm VI, algorithm V is first applied to 

solve the problem. Solutions obtained from Algorithm V may be either infeasible or 

feasible. Infeasibility in this case implies that some operations have to start before 

time zero to produce at products within their due dates. In the latter case, feasibility 

implies all products can be produced to meet their due dates. However, a schedule 

that meets the due dates of all jobs does not imply a schedule with minimum cost. It 
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is possible to lower production cost by forcing some jobs to be tardy. Therefore, 

algorithm VI should be able to solve both problem cases. Since these two cases can 

be studied and solved independently, ones can separately study and develop 

procedure for solving each problem case. Later, these two developed methods are 

integrated with algorithm V to form algorithm VI, which is an algorithm for minimizing 

the sum of weighted earliness and tardiness penalties. These two problem cases are 

discussed in sections 4.2.2.1 and 4.2.2.2. 

4.2.2.1 The case Involving the realization of an infeasible solution after 
employing algorithm V 

For this problem case, there are two possible ways to get feasible solution. In 

the first approach, the infeasible schedule is right shifted in time without violating any 

constraint until feasible solution is obtained. In the second approach, set new due-

date, called virtual due-date, for the final operation of a product. For example, 

consider, the product structure shown in Figure 4.7. The processing times, the 

earliness costs, and the tardiness costs for each operation are presented in Table 

4.2. The actual due-dates for product 1 Is 60, product 2 is 50, and product 3 is 40. 

Table 4.2 Parameters of products 1, 2 and 3 in example 4.2 
Processing Earliness Tardiness Operation Processing Earliness Tardiness 

Operation time Cost Cost time Cost Cost 

(unit time) (cost/time) (cost/time) (unit time) (cost/time) (cost/time) 

ioTl Ti 20 25 2222 5 6 

1111 7 12 - 2213 3 2 

1312 5 4 - 3031 10 20 40 

1412 5 4 - 3022 8 12 

1213 3 4 - 3011 6 10 

2021 10 22 35 3112 5 7 

2012 7 11 - 3313 3 2 

2133 4 7 - 3413 2 1 

2122 4 5 - 3221 6 6 

2111 2 2 - 3212 2 1 
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Product 1 

Product 2 

3313 

1011 

3011 

3212 

2222 

2012 

3022 
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Figure 4.7. Product structure for assembly products in examples 4.2-4.3 
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For simplicity, we will refer to the due-dates as "60-50-40". The ideal schedule 

and the schedule after employing algorithm V are as shown in Figure 4.8-4.9, 

respectively. The solution given in Figure 4.9 is infeasible, since there are some 

operations that start in negative time. The negative start time also implies that at 

least one product must be tardy to obtain feasible solution. Now, we can set the 

virtual due-date of each product by setting it as the actual due-date plus the absolute 

value of the earliest non-positive start time of any operation in the infeasible solution. 

The earliest non-positive start time is -8 for operation 3413 in Fig. 4.9. By this 

concept, three sets of due-dates can be obtained, which are "68-50-40", "60-58-40", 

and "60-50-48". For each due-date set, algorithm V is applied to solve the problem. 

The due-date set, which provides the best feasible solution is selected. If a feasible 

solution cannot be obtained, the method is repeated until feasible solution is 

achieved. These two approaches contain some weaknesses. The rightward shift 

method depends pretty much on the initial solution (infeasible solution) which was 

obtained from algorithm V, but more than one product can be tardy simultaneously. 

This will not happen in the virtual due-date method. The virtual due-date method 

searches for one tardy product at a time. It is quite possible that a local optimal 

solution is obtained in an early stage of the process. The integration of these two 

approaches can help to reduce the weaknesses of both. This can be done by 

applying the rightward shift method after the virtual due-date method, if the virtual 

due-date still provides an infeasible solution. For example, with the virtual due-date 

of "60-50-48", the ideal solution is as shown in Figure 4.10 and the schedule after 

employing algorithm V is the same as the schedule in Figure 4.9. Although this 

solution is infeasible, it will not be discarded. The rightward shift method is applied to 

get a feasible solution (see Fig.4.11). This solution is then compared with solutions 

obtained from the cases involving the virtual due-date sets "68-50-40" and "60-58-

40". This integration method helps to search for solution more broadly. This reduces 

the problem of overlooking potential solutions if the virtual due-date method is used 

alone. 
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4.2.2.2 The case involving the realization of feasible solution 
after employing algorihm V 

In this problem case, the schedule obtained from algorithm V is feasible. It 

implies that all products can be completed before or on their due-dates. But. this 

schedule may not be the best solution. If one forces some products to be tardy, the 

total cost could be reduced. This situation occurs, when the due-dates of products 

are very tight and the earliness costs of products and sub-jobs are high. Allowing 

some products to be tardy may help to relax the tightness of due-dates and 

consequently reduce overall cost. To deal with this situation, one needs to find the 

critical product from the initial schedule and the amount of tardiness necessary for 

the critical product. The critical product is the product that causes the tightness of 

the schedule. In other word, the critical product is the product that generates the 

highest earliness penalty of the schedule. To identify the critical product, in this 

research, products are removed from the schedule one at a time. After removing a 

product, the operations of the rest of the products are right shifted in time without 

violating any constraints. In this respect, the earliness cost of the existing products 

should be reduced. For the removed product, it can be assumed that it is tardy in 

the same amount of rightward shift of operations of unremoved products. If the 

amount of earliness cost saved by the rightward shift of unremoved products is 

larger than the tardiness cost of the removed product, then the removed product is a 

candidate product to be tardy. 

To obtain a solution, the virtual due-date of the critical product is obtained by 

adding the amount of rightward shift to the original due-date. Based on the new 

virtual due-date, algorithm V is employed to solve the problem. As an illustration, 

consider a problem situation that involves products as Table 4.3 (Example 4.3), 

whose product structures are as shown in Figure 4.7. The processing time, earliness 

cost, and tardiness cost of each operation are as presented in Table 4.3. The actual 

due-dates of product 1 is 70, product 2 is 80 and product 3 is 80. The due-date can 

be represented as "70-80-80". 
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Table 4.3 Parameters of products 1, 2 and 3 of example 4.3 
Processing Earliness Tardiness Operation Processing Earliness Tardiness 

Operation time Cost Cost time Cost Cost 
(unit time) (cost/time) (cost/time) (unit time) (cost/time) (cost/time) 

1011 10 20 30 2222 7 10 -

1111 8 12 - 2213 3 2 -

1312 3 4 - 3031 10 20 30 

1412 3 4 - 3022 9 12 -

1213 5 9 - 3011 6 10 -

2021 10 22 30 3112 4 7 -

2012 9 11 - 3313 3 1 -

2133 6 7 - 3413 3 2 -

2122 5 5 - 3221 6 10 -

2111 4 2 - 3212 4 4 -

The ideal solution and an initial feasible solution obtained from algorithm V 

are as shown in Figures 4.12 and 4.13, respectively. Then remove one product at a 

time from the Initial schedule. In Figure 4.14, product 3 is removed from Figure 4.13, 

and then rightward shift is performed for all the operations of the unremoved 

products (i.e., product 1 and 2). There are two stages in doing rightward shift for 

products 1 and 2 without violating any constraints. Operations 1011 and 1111 can 

be rightward shifted tOtime units (see Fig.4.15). Operations 1312 and 1412 can be 

rightward shifted 2 time units without violating any constraints (see Fig. 4.16). 

Therefore, we have two possible stages (i.e., shift 2 and 10 unit times) of shifting the 

existing schedule of unremoved products. This also means that the possible amount 

of tardiness of the removed product (product 3) is either 2 or 10. This concept is 

reasonable. Assume that one wants to shift the existing schedule of products 1 and 

2 by 10 unit times for saving some earliness costs, then product 3 must be tardy, at 

least, by 10 unit times. At this point, one needs to identify the tardiness amount to be 

used (i.e., either 2 or 10). The right tardiness amount can be determined by 

calculating the cost savings. If one shifts an existing and schedule by 10 unit times, 

earliness cost of 145 unit cost can be saved (see Fig. 4.15) and the tardiness cost of 

product 3 (i.e., 10 unit times tardiness) is 300 unit cost. Therefore, forcing product 3 
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MC3 lî liafiti I 2213 I I 2133 I 

MC2 2122 I 2222 ~T 2012 

MCI 2111 2021 

25 30 35 40 45 50 55 60 S 70 75 80 
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to be tardy 10 unit times does not reduce cost, since the tardiness cost is larger than 

the earliness cost that can be saved. This process is also applied to force product 3 

to be tardy for 2 unit times. It turns out that the tardiness cost is also larger than the 

earliness cost that can be saved. Therefore, product 3 is not the critical product. 

Forcing product 3 to be a tardy job does not help to reduce the overall cost. 

Similarly, the whole process is repeated by removing products 1 and 2. In example 

4.3, in all possible cases of removing products 1 and 2 from the initial schedule, it is 

found that it is only by removing product 2 from the initial schedule (see Fig. 4.17) 

and carrying out rightward shift of existing schedule by 10 unit times (see Fig. 4.18) 

can reduction in the overall cost be realized. The earliness cost can be reduced by 

502 unit costs and the tardiness cost of product 2 (I.e., 10 unit time tardiness) is 300 

unit costs. Therefore, product 2 is a critical product. Forcing product 2 io be tardy by 

10 unit times could help to reduce the overall cost. Now, the virtual due-date of 

product 2 can be set as 90. With the due-date "70-90-80", then algorithm V is 

employed to schedule all operations. The ideal solution and feasible solution for the 

due-date '70-90-80" are as shown in Figures 4.19 and 4.20, respectively. If the new 

solution is not better than the initial solution, then the algorithm stops. Otherwise, the 

new solution is set as the current best solution and the whole process is repeated 

again until no more improvement in solution is obtained. 

4.2.3 Algorithm VI development 

In this section, the step by step description of algorithm VI is presented. 

Algorithm VI Is an Integration of algorithm V and the methods previously mentioned 

In sections 4.2.2.1 and 4.2.2.2. The followings are additional notations and 

definitions used in the presentation of algorithm VI. 

System variables 

M: Set of feasible solutions. 

B: Set of all operations. 

Pi: Set of possible tardiness amount for product /. 
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Algorithm VI 

Step 0. Set M = ̂  and P, = ^for all /. 

Step 1. Employ algorithm V to construct an initial schedule, called schedule R 

Step 2. Check feasibility of R. If R is a feasible solution (i.e., Sf,yw; > 0, VOpju)), go to 

step 7. Otherwise go to step 3. 

Step 3. While maintaining precedence relationship between operations, do rightward 

shift in R until feasible solution is obtained (i.e., S(^ki) ^ 0, VO(,ji(i)). Keep this 

solution as a feasible solution in M, where M \s a set of feasible schedules. 

Set schedule back to R. 

Step 4. Determine the eariiest starting time of all operations B in R (i.e., S(ijki)' 

< min 1), where 8 is the set of all operations in R. In this step, Sfm' ^0. 
OUjkD^B^ '''J"" 

Let G be the appropriate amount of tardiness. Set 6 = \S(ijki)'\ • 

Step 5. For each product /, set the virtual due-date of the product equal to the actual 

due-date plus the appropriate amount of tardiness (i.e., virtual due-date 

of product /= Di+ G ). and repeat the following steps (5a-5c). 

5a. Based on the virtual due-date of product / and the actual due-dates of the 

other products, employ algorithm V to schedule the operations. 

5b. If a feasible solution (i.e.. > 0, for VOf/ywj) is obtained, place this 

solution in M. Otherwise do rightward shift operations until feasible 

solution is achieved (\.e.,S(ijid) ^0, for VO^,yw;) and place this solution as a 

feasible solution in M, 

5c. Reset the schedule back to R. 

Step 6. Select the best solution in M, called R'. and set R = R'. 

Step 7. Set M = ({>. For each product / in R, do the following steps (7a-7d). 

7a. Remove all operations of product / from R. 

7b. Let R* be the schedule after removing product / from R. For each 

operation in R*, do the steps (7b(1)-7b(2)). 

7b(1). Shift 0(ijkiy to the right without violating precedence constraint. 
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Let Q(rjkiy be the amount that Ofywrcan be shifted to the right in time. 

If Q(rikiy ^ 0, place Qojuy in P, where P, is the set of possible tardiness 

amount of product /. 

7b(2). Set the schedule back to R*. 

7c. Let Pi(a) be a member of P,. For each Pi(a) , do the following steps. 

7c(1). Set virtual due-date of product / equal to the due-date of 

product / in R plus Pi(a) (i.e., D(iinR) + Pi(a)). 

7c(2). Based on the new virtual due-date of product / from 7c(1) and 

the due-dates of the other products in R , employ algorithm V to 

construct a new schedule for all the operations. Place the solution 

in set M. 

7d. Reset the schedule back to R. 

Step 8. Select the best solution in M, called R'. If R' is better than R, set R = R', set 

M = (^ and return to step 7, otherwise stop. 

A step by step presentation of algorithm V with example 4.2 is illustrated in 

Appendix C. 
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CHAPTER 5 

HEURISTIC COMPARISON 

In this chapter, the six developed heuristic algorithms are tested and 

compared to optimal solutions obtained by using exact solution procedure for some 

sample test problems. In the single machine problem, algorithm I and algorithm II 

are also compared with each other for the case of weighted earliness cost 

minimization. Comparisons between algorithms III, IV and the Ow & Morton 

dispatching algorithm [31] are also performed for the case of minimizing the sum of 

weighted earliness and weighted tardiness cost. 

5.1 Heuristic comparison in single machine problem 

5.1.1 Single machine problem with earliness cost minimization 

Algorithms I and II were applied to 75 test problems. The problem sizes 

varied from 10 to 30 jobs. The processing times, the due-dates, and the weighted 

earliness penalty per unit time for each job were randomly generated. The results 

from both algorithms were also compared with the optimal solutions for the problem 

cases involving 10 jobs, and 15 jobs. The optimal solutions were obtained by 

applying the LINDO commercial software to solve the equivalent mathematical 

models on a PC with Pentium II processor and running at 233 MHz. In this research, 

if the optimal solution cannot be obtained within 2 hours by LINDO, the problem is 

aborted. Aborted test problems had no optimal solution to report and were instead 

marked as being nonapplicable (N/A) on the comparison table. 

Of the 75 test problems examined, 19 were solved to optimality within two 

hours using mathematical programming approach (see Table 5.1-5.2). Algorithm II 

also found the optimal solutions for all the 19 problems, while heuristic algorithm I 

found the optimal solutions for 18 problems. For the remainder of the problems, 

exact solution procedure was no longer used because of the increasing problem 

sizes. However, the two algorithms were used in solving the problem. The results 

obtained are shown in Tables 5.3-5.5. From the results given, it was found that 

algorithm I outperformed algorithm II. The quality of the solutions from algorithm I 
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Table 5.1 Comparison of solutions for problems with 10 jobs 
Pro.# Opt. Sol. Alg. 1 Sol. Alg. II Sol. %dev %dev %dev CPU CPU CPU 

(Unit Cost) (unit cost) (unit cost) ofB of C ofC time (A) time time 
(A) (B) (C) from A from A from B (sec.) (B) 

(sec.) 
(C) 

(sec.) 
1 81 81 81 0 0 0 6 <1 <1 
2 286 293 286 2.44 0 -2.44 4 <1 <1 
3 112 112 112 0 0 0 3 <1 <1 
4 83 83 83 0 0 0 13 <1 <1 
5 97 97 97 0 0 0 11 <1 <1 
6 299 299 299 0 0 0 43 <1 <1 
7 64 64 64 0 0 0 4 <1 <1 
8 186 186 186 0 0 0 8 <1 <1 
9 421 421 421 0 0 0 139 <1 <1 
10 271 271 271 0 0 0 8 <1 <1 
11 405 405 405 0 0 0 53 <1 <1 
12 121 121 121 0 0 0 4 <1 <1 
13 229 229 229 0 0 0 6 <1 <1 
14 225 225 225 0 0 0 13 <1 <1 
15 208 208 208 0 0 0 39 <1 <1 

Average of % deviation 0.16 0 -0.16 
Standard deviation of % deviation 0.63 0 0.63 

Table 5.2 Comparison of solutions for problems with 15 jobs 
Pro. # Opt. Sol. Alg. I Sol. Alg. II Sol. %dev %dev %dev CPU CPU CPU 

(Unit Cost) (unit cost) (unit cost) of B of C of C Time (A) time time 
(A) (B) (C) from A from A from B (sec.) (B) 

(sec.) 
(C) 

(sec.) 
1 N/A 1219 1251 N/A N/A 2.63 >2hr. <1 <1 
2 N/A 762 762 N/A N/A 0.00 >2hr. <1 <1 
3 135 135 135 0 0 0.00 105 <1 <1 
4 406 406 406 0 0 0.00 2hr. Imin. <1 <1 
5 N/A 852 880 N/A N/A 3.29 >2hr. <1 <1 
6 N/A 581 581 N/A N/A 0.00 > 2hr. <1 <1 
7 N/A 1041 1041 N/A N/A 0.00 > 2hr. <1 <1 
8 226 226 226 0 0 0.00 1090 <1 <1 
9 153 153 153 0 0 0.00 364 <1 <1 

10 N/A 197 202 N/A N/A 2.54 >2hr. <1 <1 
11 N/A 540 545 N/A N/A 0.93 >2hr. <1 <1 
12 N/A 1033 1033 N/A N/A 0.00 >2hr. <1 <1 
13 N/A 218 225 N/A N/A 3.21 >2hr. <1 <1 
14 N/A 286 283 N/A N/A -1.05 >2hr. <1 <1 
15 N/A 313 313 N/A N/A 0.00 >2hr. <1 <1 

Average of % deviation 0.77 
Standard deviation of % deviation 1.40 

- N/A ; the optimal solution could not be obtained within 2 hours. 
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Table 5.3 Comparison of solutions for problems with 20 jobs 
Pro.# Aig. 1 Sol. Aig. II Sol. % deviation Algorithm 1 Algorithmll 

(unit cost) (unit cost) of Aig II from Aig 1 CPU time CPU time 
(sec.) (sec.) 

1 917 925 0.87 <1 <1 
2 762 762 0.00 <1 <1 
3 135 135 0.00 <1 <1 
4 406 406 0.00 <1 <1 
5 852 880 3.29 <1 <1 
6 581 581 0.00 <1 <1 
7 1041 1041 0.00 <1 <1 
8 226 226 0.00 <1 <1 
9 153 153 0.00 <1 <1 

10 197 202 2.54 <1 <1 
11 540 545 0.93 <1 <1 
12 1033 1033 0.00 <1 <1 
13 218 225 3.21 <1 <1 
14 286 283 -1.05 <1 <1 
15 313 313 0.00 <1 <1 

Average of % deviation 0.65 
Standard deviation of % 1.30 

deviation 
- Algoritlim I is better than algorithm II by 0.65 % on the average with standard deviation of 1.30. 

Table 5.4 Comparison of solutions for problems with 25 jobs 
Pro. # Aig. 1 Sol. Aig. II Sol. % deviation Algorithm 1 Algorithmll 

(unit cost) (unit cost) of Aig II from Aig 1 CPU time CPU time 
(sec.) (sec.) 

1 929 917 -1.29 <2 <2 
2 1278 1278 0.00 <2 <2 
3 756 752 -0.53 <2 <2 
4 1112 1078 -3.06 <2 <2 
5 512 532 3.91 <2 <2 
6 980 1120 14.29 <2 <2 
7 2630 2759 4.90 <2 <2 
8 2284 2369 3.72 <2 <2 
9 2033 2230 9.69 <2 <2 

10 1745 1675 -4.01 <2 <2 
11 1207 1207 0.00 <2 <2 
12 1477 1547 4.74 <2 <2 
13 1484 1499 1.01 <2 <2 
14 1479 1461 -1.22 <2 <2 
15 2144 2106 -1.77 <2 <2 

Average of % deviation 2.03 
Standard deviation of % 4.80 

deviation 
- Algorithm I is better than the algorithm II by 2.03% on the average with standard deviation of 4.8. 
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Table 5.5 Comparison of solutions for problems with 30 jobs 
Pro. # Alg. 1 Sol. Alg. II Sol. % deviation Algorithm 1 Algorithmll 

(unit cost) (unit cost) of AJg II from CPU time CPU time 
Alg 1 (sec.) (sec.) 

1 1750 1737 -0.74 <2 <2 
2 3005 3001 -0.13 <2 <2 
3 707 707 0.00 <2 <2 
4 626 626 0.00 <2 <2 
5 1282 1282 0.00 <2 <2 
6 1158 1264 9.15 <2 <2 
7 985 1044 5.99 <2 <2 
8 1241 1237 -0.32 <2 <2 
9 454 454 0.00 <2 <2 
10 1371 1557 13.57 <2 <2 
11 1870 1868 -0.11 <2 <2 
12 5171 5167 -0.08 <2 <2 
13 2182 2386 9.35 <2 <2 
14 2892 2997 3.63 <2 <2 
15 1284 1284 0.00 <2 <2 

Average of % deviation 2.69 
Standard deviation of %dev. 4.45 
- algorithm I is better than the algorithm II by 2.69% on the average with standard deviation of 4.45. 

are better than those obtained by algorithm II by approximately 1.09%. In all cases, it 

took less than 2 seconds of computational time to solve the problems by each of the 

two algorithms. The sensitivity analysis of the problem is presented in Appendix D. 

5.1.2 Single machine problem with sum of the weighted earliness 
and weighted tardiness cost minimization 

Algorithms III and algorithm IV were employed to solve 75 test problems. The 

problem sizes varied from 10 to 30 jobs. The processing times, the due-dates, the 

earliness, and the tardiness penalties for each job are randomly generated. The 

results from both algorithms are compared with the optimal solutions obtained for the 

cases involving 10 and 15 job problems. The optimal solutions are obtained by 

applying the LINDO commercial software to solve the equivalent mathematical 

models on a PC with Pentium II processor and running at 233 MHz. In this research. 

If the optimal solutions can not be obtained within 2 hours by LINDO, the model is 

aborted and no solution is reported for comparison. Aborted cases are denoted as 

N/A on the comparison tables. The solutions from both algorithms are also 

compared with the Ow & Morton's dispatch algorithm. The results of the 

comparisons are given in Tables 5.6 through 5.12. The sensitivity analysis of the 

problem is presented in Appendix D. 
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Table 5.6 Comparison of solutions for the 10 job problems with optimal 
solutions 

Pro. # Optimal Alg. Ill Alg. IV %dev %dev. %dev CPU CPU CPU 
Sol. Sol. Sol. o fB  o fC  OfB  time (A) time Time 

(Unit Cost) (unit cost) (unit cost) from A from A fromC (sec.) (B) (C) 
(A) (B) (C) (sec.) (sec.) 

1 178 178 183 0 2.8 -2.73 952 <1 <1 
2 80 80 80 0 0 0.00 39 <1 <1 
3 76 77 77 1.3 1.3 0.00 45 <1 <1 
4 171 177 171 3.5 0 3.51 50 <1 <1 
5 249 249 249 0 0 0.00 408 <1 <1 
6 77 77 77 0 0 0.00 65 <1 <1 
7 247 260 260 5.3 5.3 0.00 574 <1 <1 
8 142 153 153 7.7 7.7 0.00 346 <1 <1 
9 240 243 240 1.2 0 1.25 237 <1 <1 
10 178 178 178 0 0 0.00 444 <1 <1 
11 162 167 165 3 1.8 1.21 468 <1 <1 
12 89 89 89 0 0 0.00 247 <1 <1 
13 234 234 234 0 0 0.00 234 <1 <1 
14 375 375 375 0 0 0.00 773 <1 <1 
15 N/A 669 669 N/A N/A 0.00 >2hr. <1 <1 

Average of % deviation 1.57 1.35 0.22 
Standard deviation of % deviation 2.44 2.40 1.26 

N/A: The optimal solution can not tse obtained within 2 hours. 
- Algorithm III obtains on average deviation of 1.57% from the optimal with standard deviation of 2.44. 
- Algorithm IV obtains on average deviation of 1.35% from the optimal with standard deviation of 2.40. 
- Algorithm IV is better than the algorithm 111 by 0.22% on the average with standard deviation of 1.26. 

Table 5.7 Comparison of solutions for the 10 job problems with solutions from 
Ow & Morton algorithm 

Pro. # O&M Alg. Alg. Ill Alg. IV %dev. %dev. %dev. CPU CPU CPU 
Sol. Sol. Sol. o fD  OfD OfB  time (D) time Time 

(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C) 
(D) (B) (C) B C C (sec.) (sec.) 

1 216 178 183 21.35 18.03 -2.73 <1 <1 <1 
2 110 80 80 37.50 37.50 0.00 <1 <1 <1 
3 81 77 77 5.19 5.19 0.00 <1 <1 <1 
4 184 177 171 3.95 7.60 3.51 <1 <1 <1 
5 274 249 249 10.04 10.04 0.00 <1 <1 <1 
6 95 77 77 23.38 23.38 0.00 <1 <1 <1 
7 265 260 260 1.92 1.92 0.00 <1 <1 <1 
8 168 153 153 9.80 9.80 0.00 <1 <1 <1 
9 309 243 240 27.16 28.75 1.25 <1 <1 <1 
10 244 178 178 37.08 37.08 0.00 <1 <1 <1 
11 192 167 165 14.97 16.36 1.21 <1 <1 <1 
12 107 89 89 20.22 20.22 0.00 <1 <1 <1 
13 238 234 234 1.71 1.71 0.00 <1 <1 <1 
14 400 375 375 6.67 6.67 0.00 <1 <1 <1 
15 823 669 669 23.02 23.02 0.00 <1 <1 <1 

Average of % deviation 16.26 16.49 0.22 
Standard deviation of % deviation 11.97 11.78 1.26 

- Algorithm III is better than the O & M algorithm by 16.29% on the average with standard deviation of 11.97. 
- Algorithm IV is better than the O & M algorithm by 16.49% on the average with standard deviation of 11.78. 
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Table 5.8 Comparison of solutions for the 15 job problems with optimal 
solutions 

Pro. # Optimal /^g. Ill Alg. IV %dev %dev. %dev CPU CPU CPU 
Sol. Sol. Sol. o fB  o fC  OfB  time (A) time time 

(Unit Cost) (unit cost) (unit cost) from A from A fromC (sec.) (B) (C) 
(A) (B) (C) (sec.) (sec.) 

1 202 202 202 0 0 0.00 32 min. <1 <1 
2 131 131 131 0 0 0.00 17 min. <1 <1 
3 N/A 261 274 N/A N/A -4.74 >2hr .  <1 <1 
4 N/A 228 219 N/A N/A 4.11 >2hr .  <1 <1 
5 N/A 275 275 N/A N/A 0.00 >2hr .  <1 <1 
6 N/A 258 258 N/A N/A 0.00 >2hr .  <1 <1 
7 242 242 242 0 0 0.00 1hr.46min. <1 <1 
8 N/A 799 799 N/A N/A 0.00 >2hr .  <1 <1 
9 N/A 1067 1067 N/A N/A 0.00 >2hr .  <1 <1 
10 N/A 529 582 N/A N/A -9.11 >2hr .  <1 <1 
11 N/A 705 705 N/A N/A 0.00 >2hr. <1 <1 
12 N/A 549 549 N/A N/A 0.00 >2hr. <1 <1 
13 N/A 584 584 N/A N/A 0.00 > 2hr. <1 <1 
14 N/A 699 699 N/A N/A 0.00 > 2hr. <1 <1 
15 N/A 1131 1130 N/A N/A 0.09 >2hr. <1 <1 

Average of % deviation 0 0 -0.64 
Standard deviation of % deviation 0 0 2.88 

N/A : the opt'mal solution can not tie obtained within 2 hours. 
- Algorithm III Is better than the algorithm IV by 0.64% on the average with standard deviation of 2.88. 

Table 5.9 Comparison of solutions for the 15 job problems with solutions from 
Ow & Morton algorithm 

Pro. # O&M alg. Alg. Ill Alg. IV %dev. %dev. %dev. CPU CPU CPU 
Sol. Sol. Sol. o fD  OfD OfB  time (D) time time 

(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C) 
(D) (B) (C) B C C (sec.) (sec.) 

1 226 202 202 11.88 11.88 0.00 <1 <1 <1 
2 151 131 131 15.27 15.27 0.00 <1 <1 <1 
3 280 261 274 7.28 2.19 -4.74 <1 <1 <1 
4 261 228 219 14.47 19.18 4.11 <1 <1 <1 
5 527 275 275 91.64 91.64 0.00 <1 <1 <1 
6 462 258 258 79.07 79.07 0.00 <1 <1 <1 
7 358 242 242 47.93 47.93 0.00 <1 <1 <1 
8 868 799 799 8.64 8.64 0.00 <1 <1 <1 
9 1422 1067 1067 33.27 33.27 0.00 <1 <1 <1 
10 959 529 582 81.29 64.78 -9.11 <1 <1 <1 
11 811 705 705 15.04 15.04 0.00 <1 <1 <1 
12 570 549 549 3.83 3.83 0.00 <1 <1 <1 
13 657 584 584 12.50 12.50 0.00 <1 <1 <1 
14 788 699 699 12.73 12.73 0.00 <1 <1 <1 
15 1180 1131 1130 4.33 4.42 0.09 <1 <1 <1 

Average of % deviation 29.28 28.16 -0.64 
Standard deviation of % deviation 30.58 28.98 2.88 

-Algorithm III is better than the 0& M algorithm by 29.28% on the average with standard deviation of 30.58. 
-Algorithm IV is better than the O&M algorithm by 28.16% on the average, with standard deviation of 28.98. 



www.manaraa.com

96 

Table 5.10 Comparison of solutions for the 20 job problems 
Pro .#  O&M alg. Aig. ill Alg. IV %dev. %dev. %dev. CPU CPU CPU 

Sol. Sol. Sol. of D o fD  of B time (D) time time 
(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C) 

(D) (B) (C) B C C (sec.) (sec.) 
1 583 430 430 35.58 35.58 0.00 < 1 < 1 < 1 
2 794 665 665 19.40 19.40 0.00 < 1 < 1 < 1 
3 334 221 221 51.13 51.13 0.00 < 1 < 1 < 1 
4 742 659 617 12.59 20.26 6.81 < 1 < 1 < 1 
5 1128 990 868 13.94 29.95 14.06 < 1 < 1 < 1 
6 1430 1025 1069 39.51 33.77 -4.12 < 1 < 1 < 1 
7 1088 1037 860 4.92 26.51 20.58 < 1 < 1 < 1 
8 1340 920 1069 45.65 25.35 -13.94 < 1 < 1 < 1 
9 426 372 363 14.52 17.36 2.48 < 1 < 1 < 1 
10 1443 1011 903 42.73 59.80 11.96 < 1 < 1 < 1 
11 426 499 426 -14.63 0.00 17.14 < 1 < 1 < 1 
12 546 504 515 8.33 6.02 -2.14 < 1 < 1 < 1 
13 766 697 687 9.90 11.50 1.46 < 1 < 1 < 1 
14 780 636 633 22.64 23.22 0.47 < 1 < 1 < 1 
15 712 595 588 19.66 21.09 1.19 < 1 < 1 < 1 

Average of % deviation 21.73 25.40 3.73 
Standard deviation of % deviation 17.96 15.60 8.95 

- Algorithm III Is better than the O&M algorithm by 21.73% on the average with standard deviation of 17.96. 
- Algorithm IV is better than the O&M algorithm by 25.40% on the average with standard deviation of 15.60. 
- Algorithm IV is better than algorittim III by 3.73% on the average with standard deviation of 8.95. 

Table 5.11 Comparison of solutions for the 25 job problems 
Pro. # O&M alg. Alg. Ill Alg. IV %dev. %dev. %dev. CPU CPU CPU 

Sol. Sol. Sol. OfD  OfD  of B time (D) time time 
(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C) 

(D) (B) (C) B C C (sec.) (sec.) 
1 1206 1033 1023 16.75 17.89 0.98 < 1 <2 <2 
2 568 469 446 21.11 27.35 5.16 < 1 <2 <2 
3 827 562 604 47.15 36.92 -6.95 < 1 <2 <2 
4 555 436 414 27.29 34.06 5.31 < 1 <2 <2 
5 520 305 315 70.49 65.08 -3.17 < 1 <2 <2 
6 322 218 218 47.71 47.71 0.00 < 1 <2 <2 
7 1493 1121 1121 33.18 33.18 0.00 < 1 <2 <2 
8 748 708 683 5.65 9.52 3.66 < 1 <2 <2 
9 695 558 558 24.55 24.55 0.00 < 1 <2 <2 
10 699 621 545 12.56 28.26 13.94 < 1 <2 <2 
11 649 632 600 2.69 8.17 5.33 < 1 <2 <2 
12 931 611  606 52.37 53.63 0.83 < 1 <2 <2 
13 996 885 885 12.54 12.54 0.00 < 1 <2 <2 
14 427 378 371 12.96 15.09 1.89 < 1 <2 <2 
15 1336 1192 1132 12.08 18.02 5.30 < 1 <2 <2 

Average of % deviation 26.61 28.80 2.15 
Standard deviation of % deviation 19.71 16.71 4.73 

- Algorithm III Is better than the O & M algorithm by 26.61% on the average with standard deviation of 19.71. 
- Algorithm IV is better than the O&M algorithm by 28.80% on the average with standard deviation of 16.71. 
- Algorithm IV is better than the algorithm III by 2.15% on the average with standard deviation of 4.73. 
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Table 5.12 Comparison of solutions for the 30 job problems 
Pro. # O&M alg. Alg. Ill Alg. IV %dev. %dev. %dev. CPU CPU CPU 

Sol. Sol. Sol. of D of D of B time (D) time time 
(Unit Cost) (unit cost) (unit cost) from from from (sec.) (B) (C) 

(D) (B) (C) B C C (sec.) (sec.) 
1 1159 1062 894 9.13 29.64 18.79 < 1 <2 <2 
2 951 777 732 22.39 29.92 6.15 < 1 <2 <2 
3 1395 810 852 72.22 63.73 -4.93 < 1 <2 <2 
4 1268 1084 1120 16.97 13.21 -3.21 < 1 <2 <2 
5 1057 941 851 12.33 24.21 10.58 < 1 <2 <2 
6 1068 908 891 17.62 19.87 1.91 < 1 <2 <2 
7 1032 901 883 14.54 16.87 2.04 < 1 <2 <2 
8 1229 1095 1077 12.24 14.11 1.67 < 1 <2 <2 
9 1088 654 672 66.36 61.90 -2.68 < 1 <2 <2 
10 427 398 431 7.29 -0.93 -7.66 < 1 <2 <2 
11 1598 1338 1330 19.43 20.15 0.60 < 1 <2 <2 
12 1409 935 894 50.70 57.61 4.59 < 1 <2 <2 
13 1300 1055 1031 23.22 26.09 2-33 < 1 <2 <2 
14 1357 1110 1021 22.25 32.91 8.72 < 1 <2 <2 
15 1552 1249 1306 24.26 18.84 -4.36 < 1 <2 <2 

Average of % deviation 26.06 28.54 2.30 
Standard deviation of % deviation 20.27 18.77 6-85 

- Algorithm III is better tlian the O & M algorittim by 26.06% on the average with standard deviation 20.27. 
- Algorithm IV is better than the O & M algorithm by 28.54% on the average with standard deviation 18.77. 
- Algorithm IV is better than the algorithm III by 2.30% on the average with standard deviation 6.85. 

The results show that algorithm IV, the tabu search, is the best algorithm for 

solving the eariiness/tardiness problems compared to algorithm III and the Ow & 

Morton algorithm. It outperforms algorithm III and Ow & Morton dispatch algorithm 

by about 1.55% and 25.48 %, respectively, on average. Algorithm IV is relatively 

better than algorithm III when the size of the problem is increased. Both algorithms 

are much better than the Ow & Morton algorithm at all levels. The computational 

times for both algorithms are also much faster than those obtained by solving the 

corresponding mathematical models by the LINDO software. 

in the Ow & Morton algorithm, inserted idle time is not allowed on the 

machine and this is different from that of algorithms III and IV. Thus, algorithms III 

and IV can be compared to the Ow & Morton algorithm to some degrees. 

Although algorithm IV performs better than algorithm III. it has one key 

drawback. The algorithm (i.e., algorithm IV) depends on two major parameters, k (in 

Ow & Morton algorithm) and the tabu size while the algorithm III does not depend on 

any prespecified parameters. 
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5.2 Heuristic comparison in assembly job shop problem 

5.2.1 Assembly job shop problem with earliness cost minimization 

Algorithm V was employed to solve 50 test problems. The problem sizes are 

varied from 2-product and 3-machine (2P / 3M) to 5-product and 5 machine (5P / 

5M). The number of operations in the problems is varied from 12 to 42 operations. 

Each product has its own product structure. The due-dates and tardiness penalty of 

products, the processing times, and the earliness penalty for operations are 

randomly generated. The results from algorithm V are compared to the optimal 

solutions obtained by applying the LINDO commercial software to solve the 

equivalent mathematical models on PC with Pentium III processor and running at 

550 MHz. The results of the comparisons are given in Table 5.13. 

Table 5.13 Comparison of solutions from algorithm V and optimal solutions 
No. Product/ # Oper. Opt. Sol Alg V %difr CPU time CPU time 

Machine (unit cost) (unit cost) Alg V from 
Opt 

Opt. 
(sec) 

Alg. V 
(sec) 

1 2P/3M 12 264 264 0.00 2 <1 
2 2P/3M 12 160 160 0.00 2 <1 
3 2P/3M 12 56 56 0.00 1 <1 
4 2P/3M 12 153 153 0.00 1 <1 
5 2P/3M 12 270 270 0.00 2 <1 
6 2P/3M 12 235 235 0.00 2 <1 
7 3P/3M 22 311  311 0.00 97 <1 
8 3P/3M 22 457 457 0.00 119 <1 
9 3P/3M 22 297 298 0.34 95 <1 

10 3P/3M 22 432 432 0.00 72 <1 
11 3P/3M 22 322 322 0.00 156 <1 
12 3P/3M 22 590 591 0.17 1112 <1 
13 3P/3M 22 432 432 0.00 239 <1 
14 3P/3M 22 374 374 0.00 415 <1 
15 3P/3M 22 159 159 0.00 23 <1 
16 3P/3M 22 245 245 0.00 208 <1 
17 3P/3M 22 415 421 1.45 376 <1 
18 3P/3M 22 315 321 1.90 203 <1 
19 3P/3M 22 355 355 0.00 136 <1 
20 3P/3M 22 267 267 0.00 41 <1 
21 3P/3M 22 500 500 0.00 10 <1 
22 3P/3M 20 509 509 0.00 77 <1 
23 3P/3M 20 499 499 0.00 34 <1 
24 3P/3M 20 193 193 0.00 32 <1 
25 3P/3M 20 214 214 0.00 6 <1 
26 3P/3M 20 602 610 1.33 51 <1 
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Table 5.13 (continued) 
No. Product/ # Oper. Opt. Sol Alg V */.diff CPU time CPU time 

Machine (unit cost) (unit cost) Alg V from 
Opt 

Opt. 
(sec) 

Alg. V 
(sec) 

27 3P /3M 20 301 301 0.00 6 <1 
28 3P /3M 20 579 579 0.00 201 <1 
29 3P /3M 31 1019 1019 0.00 11702 <1 
30 3P /3M 31 619 619 0.00 9659 <1 
31 4P /4M 27 444 471 6.08 785 <1 
32 4P /4M 27 461 471 2.17 96 <1 
33 4P /4M 30 572 572 0.00 484 <1 
34 4P /4M 30 601 607 1.00 1011 <1 
35 4P /4M 30 581 584 0.52 1638 <1 
36 4P /4M 30 705 705 0.00 2934 <1 
37 4P /4M 27 542 556 2.58 1047 <1 
38 4P /4M 29 491 529 7.74 3232 <1 
39 4P /4M 29 350 350 0.00 742 <1 
40 4P /4M 29 530 530 0.00 466 <1 
41 4P /4M 29 334 334 0.00 171 <1 
42 4P /4M 29 500 500 0.00 938 <1 
43 4P /4M 29 770 794 3.12 4618 <1 
44 4P /4M 29 608 614 0.99 393 <1 
45 4P /4M 29 601 601 0.00 1433 <1 
46 4P/4M 29 632 632 0.00 662 <1 
47 4P /4M 29 737 746 1.22 899 <1 
48 5P/5M 37 453 453 0.00 1314 <1 
49 5P /5M 42 637 637 0.00 11720 <1 
50 5P /5M 37 720 742 3.06 11700 <1 

Average of '/(difference 0.67 
Standard deviation of % difference 1.54 

Of the 50 test problems examined (see Table 5.13), algorithm V found the 

optimal solutions for 34 problems. The largest deviation from optimal is about 7.74%. 

In all the test problems, algorithm V obtained an average deviation solutions of 

0.67% from the optimal with a standard deviation of 1.54. The computational 

requirements for solving the problems by algorithm V are less than 1 second in all 

test problems. They are much less than the computational times required by the 

optimal solution procedure. 
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5.2.2 Assembly job shop problem with the sum of weighted earliness 
and weighted tardiness cost minimization 

To test the efficiency of algorithm VI, more than 50 sample problems were 

generated and tested. But it was not possible to find optimal solutions for all 

problems by LINDO software because of the storage and computational load 

required. LINDO was out of memory for some problems, especially with the large 

size problems (4-product and 4-machine. 5-product and 5-machine). Of the more 

than 50 sample problems solved, 50 of them were solved optimally by the LINDO 

software on a PC with Pentium III processor and running at 550 MHz. Algorithm VI 

was applied to solve these 50 test problems. The problem sizes are varied from 2-

product and 3-machine (2P / 3M) to 4-product and 4-machine (4P / 4M). The number 

of operations is varied from 12 to 30 operations. Each product has its own product 

structure. The due-dates and tardiness penalties of the products are randomly 

generated. The processing times, and the eariiness penalties of operations are also 

randomly generated. The results of the comparisons for the 50 test problems solved 

to optimality by LINDO are shown in Table 5.14. 

Table 5.14 Comparison of solutions from algorithm VI and optimal solutions 
No. Product/ # Oper. Opt. Sol Ala VI %diff CPU time CPU time Comment^ 

Machine (unit cost) (unit cost) Alg VI Opt. Alg 6 (T ardiness 
from Opt (sec) (sec) Type) 

1 2P/3M 12 275 275 0.00 7 <1 1 
2 2P/3M 12 458 458 0.00 6 <1 1 
3 2P/3M 12 513 518 0.97 3 <1 1 
4 2P/3M 12 284 284 0.00 5 <1 1 
5 2P/3M 12 530 530 0.00 3 <1 1 
6 2P/3M 12 347 347 0.00 7 <1 2 
7 2P/3M 12 487 487 0.00 10 <1 2 
8 2P/3M 12 631 631 0.00 5 <1 2 
9 2P/3M 12 556 556 0.00 5 <1 2 
10 2P/3M 12 680 680 0.00 5 <1 2 
11 3P/3M 20 300 300 0.00 40 <1 1 
12 3P/3M 20 479 479 0.00 232 <1 1&2 
13 3P/3M 20 980 980 0.00 181 <1 1 
14 3P/3M 20 798 798 0.00 185 <1 1 
15 3P/3M 20 299 299 0.00 684 <1 1&2 
16 3P/3M 20 886 886 0.00 1059 <1 1 
17 3P/3M 20 625 629 0.64 1280 <1 2 
18 3P/3M 20 682 682 0.00 631 <1 2 
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Table 6.14 (continued) 
No. Product/ # Oper. Opt. Sol Alg VI Vadiff CPU time CPU time Comment * 

Machine (unit cost) (unit cost) Alg VI Opt. Alg 6 (Tardiness 
from Opt (sec) (sec) Type) 

19 3P/3M 20 682 752 10.26 917 <1 2 
20 3P/3M 20 746 770 3.22 298 <1 2 
21 3P/3M 20 846 846 0.00 279 <1 2 
22 3P/3M 20 956 958 0.00 1232 <1 2 
23 3P/3M 20 1025 1025 0.00 551 <1 2 
24 3P/3M 22 587 587 0.00 3959 <1 2 
25 3P/3M 22 306 306 0.00 724 <1 2 
26 3P/3M 22 357 357 0.00 381 <1 1&2 
27 3P/3M 22 311 318 2.25 264 <1 1&2 
28 3P/3M 22 440 440 0.00 1213 <1 1&2 
29 3P/3M 22 754 819 8.62 1986 <1 1 
30 3P/3M 22 533 533 0.00 374 <1 1 
31 3P/3M 22 419 419 0.00 965 <1 1&2 
32 3P/3M 22 397 406 2.27 412 <1 1 
33 3P/3M 22 615 643 4.55 536 <1 1 
34 3P/3M 22 865 1003 15.95 435 <1 1 
35 3P/3M 22 648 707 9.10 329 <1 1 
36 3P/3M 22 766 766 0.00 1322 <1 2 
37 3P/3M 22 807 820 1.61 2344 <1 2 
38 3P/3M 22 744 756 1.61 368 <1 2 
39 3P/3M 22 1320 1320 0.00 938 <1 2 
40 3P/3M 22 1250 1310 4.80 900 <1 2 
41 3P/3M 22 1396 1483 6.23 610 <1 2 
42 4P/4M 27 595 673 13.11 2069 <1 2 
43 4P/4M 27 542 549 1.29 673 <1 2 
44 4P/4M 27 995 1120 12.56 5844 <1 2 
45 4P/4M 27 1112 1192 7.19 2875 <1 2 
46 4P/4M 27 797 813 2.01 1922 <1 2 
47 4P/4M 30 707 712 0.71 5281 <1 1 
48 4P/4M 30 918 947 3.16 5204 <1 1 
49 4P/4M 30 1097 1214 10.67 4891 <1 2 
50 4P/4M 30 648 672 3.70 5029 <1 2 

Average of "/(difference = 2.53 
Standard deviation = 4.12 

Tardiness type 1: To obtain feasible solution, some products must be tardy. 
® Tardiness type 2: Feasible solution can be obtained without any tardiness, but forcing some 

products to be tardy reduces the total cost 

Of the 50 test problems examined (see Table 5.14), algorithm VI found the 

optimal solutions for 27 problems. The largest deviation from optimum is about 

15.95%. In all test problems, algorithm VI obtained an average deviation solutions of 

2.53% from the optimum and with a standard deviation of 4.12. The computational 
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requirements for solving the problems by algorithm VI are less than 1 second in all 

problems tested. These times are much less than the computational times of the 

optimal solution procedure. 
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CHAPTER 6 

SUMMARY AND CONCLUSION 

In this research, the following four scheduling problems have been studied: 

(1) single machine problem with earliness cost minimization, (2) single machine 

problem with the sum of the weighted earliness and weighted tardiness cost 

minimization, (3) assembly job shop problem with earliness cost minimization, and 

(4) assembly job shop problem with the sum of weighted earliness and weighted 

tardiness cost minimization. Four mathematical models based on these four 

scheduling problems were developed in an effort to obtain optimal solutions. Six 

heuristic algorithms were developed to solve the problems. Algorithms I and II were 

developed to solve the single machine problem with earliness cost minimization. 

Algorithms III and IV were developed to solve the single machine problem with the 

sum of the weighted eariiness and weighted tardiness cost minimization. Algorithm V 

was developed to solve the assembly job shop problem with eariiness cost 

minimization and Algorithm VI was developed to solve the assembly job shop 

problem with the sum of weighted eariiness and weighted tardiness cost 

minimization. The performances of the heuristic algorithms were demonstrated on 

some sample test problems. Quality of solutions and CPU time of solutions were the 

performance measures of interest. 

6.1 Summary of the research 

We have identified several properties of optimal solutions for the single 

machine scheduling problem with the objective of minimizing the weighted eariiness 

penalty. Algorithm I was developed based on these properties while algorithm II is 

based on the tabu search concept with short term memory search. Both algorithms I 

and II were applied to 75 test problems. The problem sizes are varied from 10 to 30 

jobs. The results from both algorithms were also compared with the optimal solutions 

for the problem cases involving 10 jobs and 15 jobs. The results from both 

algorithms I and II indicate that these two algorithms are able to produce solutions 
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close to optimal in small size problems. For the large problems, the quality of the 

solutions from algorithm I based on optimality conditions are relatively better than 

those obtained by algorithm II based on tabu search concept by approximately 

1.09%. The computational time to solve the problems by these two heuristic 

algorithms is less than 2 second in all cases. 

Algorithms III and IV are respectively the extension of heuristic algorithms I 

and II. Algorithm III is a combination of the features of algorithm I and the paioA/ise 

interchange method while algorithm IV is based on the tabu search concept. The 

only difference between algorithms II and IV is that job tardiness is allowed in 

algorithm IV. Algorithms III and IV were applied to 75 test problems of single 

machine problem with the sum of the weighted eariiness and weighted tardiness 

cost minimization. The results from these two algorithms were compared with the 

optimal solutions for the problem cases involving 10 and 15 jobs. The solutions from 

both algorithms were also compared with the Ow & Morton [31] dispatching 

algorithm, in Ow & Morton [31] algorithm, inserted idle time is not allowed on the 

machine and this is different from that of algorithms III and IV. Thus, algorithms III 

and IV can be compared to the Ow & Morton algorithm to some degrees. For small 

size problems, the results Indicate that algorithm III obtained an average deviation 

solutions of 1.38% from optimal while algorithm IV based on tabu search obtained 

an average deviation of 1.18% from the optimal. For all problems tested, the results 

show that algorithm IV, the tabu search, is the best algorithm for solving the 

earliness/tardiness problems compared to algorithm III and the Ow & Morton 

algorithm. It outperforms algorithm III and Ow & Morton [31] dispatch algorithm by 

about 1.55% and 25.48%, respectively, on average. The computational time to solve 

the problems by these two heuristic algorithms is less than 2 seconds in all cases. 

Algorithm V is extended from algorithm I. It is applied to solve multiple 

machine problems with eariiness cost minimization. In algorithm V, a multiple 

machine problem is decomposed into a set of single machine problems. Each 

decomposed single machine problem is solved by algorithm I. Decomposed single 

machine problems are related to one another by the precedence relationships 
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between operations in the product structures. Algorithm V was applied to 50 test 

problems. The test problems are varied from 2-product and 3-machine (2P / 3M) 

problems to 5-product and 5 -machine (5P / 5M) problems. Each product has its own 

product structure. The number of operations is varied from 12 to 42 operations. The 

solutions from algorithm V were compared to the optimal solutions. The results show 

that the largest deviation is about 7.74% from the optimal. This deviation was 

registered for a 4-product and 4-machine problem. But in all tested problems, 

algorithm V obtained an average deviation solutions of 0.67% from the optimal. The 

computational requirements for solving the problems are less than 1 second in all 

tested problems. They are much less than the computational times of the optimal 

solution procedure. 

Algorithm VI is the extension of algorithm V. It is a combination of the features 

of algorithm V and a method that can identify the appropriate amount of tardiness 

allocation for each product. Algorithm VI was applied to 50 test problems consisting 

of multiple machines and multiple jobs based on the minimization of the sum of 

weighted eariiness and weighted tardiness cost. The test problems varied from 2-

product and 3-machine (2P / 3M) problems to 4-product and 4-machine (4P / 4M) 

problems. Each product has its own product structure. The number of operations 

involved varied from 12 to 30 operations. The solutions from algorithm VI were 

compared to the optimal solutions. The results show that the largest deviation is 

about 15.95% from the optimal and was obtained in a 3-product and 3-machine 

problem. But in all problems tested, algorithm VI obtained an average deviation 

solutions of 2.53% from the optimal. The computational requirements for solving the 

problems are less than 1 second in all test problems. They are much less than the 

computational times of the optimal solution procedure. 
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6.2 Conclusion 

In this research, a lack of heuristic algorithms in open literature for scheduling 

jobs of practical sizes in assembly job shop with the sum of weighted earliness and 

weighted tardiness penalties prompted the developments of six heuristic algorithms. 

The development of the heuristic algorithms starts with the development of heuristics 

for the single machine problem with eariiness cost minimization (i.e., Alg I and Alg II) 

and single machine problem with the sum of weighted eariiness and weighted 

tardiness costs minimization (i.e. Alg. Ill and Alg. IV). Finally, the heuristics of single 

machine problems were extended to solve the assembly job shop problem with the 

eariiness cost minimization (i.e., Alg. V) and assembly job shop problem with the 

sum of weighted eariiness and weighted tardiness penalties (i.e., Alg. VI). 

The effectiveness of the heuristic algorithms for single machine problem (Alg. 

I, II, III, and IV) was demonstrated by the quality of solutions they produced on test 

problems. For problems of sizes 10-15 jobs, the solutions obtained were on average 

within 4% of optimal solution. It was also shown that the heuristics can solve large 

problems within very short computation times (i.e., less than 2 seconds in all cases). 

For large size problems, the optimal solutions could not be obtained to assess 

adequately their effectiveness. Algorithms I and II were compared with each other, 

while algorithm III was compared to algorithm IV. It was found that algorithm 1 was 

relatively better than algorithm II, and algorithm IV was relatively better than 

algorithm III. 

In the case of assembly job shop problem, the effectiveness of algorithm V 

and VI was demonstrated by the fact that they produced on average solution within 

1% and 3% of the optimum solution respectively. It was also shown that the 

heuristics can solve large problems within very short computational times (i.e., less 

than 2 seconds in all cases). 

One of the most important aspects of the developed heuristic algorithms is 

that they are general enough to be used in any environment where job scheduling is 

required. Algorithm V and VI can also be applied to traditional job shop problems 

without product assembly considerations. These methodologies can be easily 



www.manaraa.com

107 

implemented. They provide a very systematic way for scheduling. They can 

generate good solutions within a reasonable time. 

6.3 Research contributions 

The contributions of this research in the area of scheduling with cost 

consideration are significant. It introduces six effective heuristic algorithms for 

scheduling problem with cost consideration. The first two heuristics deal with single 

machine with eariiness penalty minimization. The third and fourth heuristics were 

developed to solve single machine problem with the sum of weighted eariiness and 

tardiness penalties minimization. These four algorithms are very easy to apply in any 

environment. The first and third heuristics also contain one significant benefit. They 

do not need any prespecified parameters, which are always required in many 

algorithms in literature such as in Ow and Morton dispatching algorithm [31]. 

The contributions of the last two heuristics (i.e., algorithm V and VI) are very 

significant in the area of scheduling, since they deal with cost minimization in an 

assembly job shop. As previously mentioned in section 1.2, there have been very 

few reported research that focused on assembly job shop. With a few published 

papers on assembly job shop, most of them deal with such regular measures as 

mean flow time and completion time. To our knowledge, no published paper deals 

exactly with the minimization of the weighted eariiness and weighted tardiness 

penalties in assembly job shop problem. It can be claimed that both algorithm V and 

VI are the very first algorithms dealing with assembly job shop with eariiness and 

tardiness cost consideration. Both algorithm V and VI are also proofed to be 

effective heuristics and general enough to apply in industries. 

These six developed heuristics are useful in real worid industries, since they 

deal exactly with the eariiness and tardiness cost. The eariiness and tardiness 

criterion is considered as one of important measure in Just in time (JIT) production 

system, which are widely applied in many industries. As mentioned eariier, the 

scheduling problem dealing with eariiness and tardiness criterion is an NP-complete 

problem even in the single machine case [6]. The optimal solution is prohibited to 
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obtain in large size problems, which are normal problem size in industries. But the 

developed heuristics in this research can be applied to solve even large size 

problem in a reasonable computational time and the performance of these six 

heuristics are good compared to optimal solution in small size problems. 

6.4 Possible extension 

The heuristic algorithms modeled in this research allowed idle time in the 

generated schedule. The cost of machine staying idle was not considered in this 

research. This condition may not be true in industries where machine cost is 

extremely high and the machine idle time is prohibited. Generating the best schedule 

without idle time is different from the schedule which is generated by the heuristic 

algorithms developed in this research. Further research might address this problem 

by considering the cost of machine staying idle in additional to eariiness and 

tardiness costs. 

The case of having identical sub-assemblies in different products and 

consolidating these subassemblies together for scheduling was not considered in 

this study. In this study, each sub-assembly was considered as a unique product. If 

the problem involves setup cost, the consideration of scheduling identical sub

assemblies as a large batch might be necessary. Scheduling identical sub

assemblies in large batch reduces setup cost and this in tum can reduce the overall 

costs. The developed heuristics can be further improved by considering this 

condition. 

Finally, in this study, machine break down was not considered. Work delay 

based on machine failures is a normal situation in industry. The consideration of 

machine failure would increase the complexity in scheduling. To implement this 

extension, stochastic modeling may be required for developing the heuristic 

procedures. 
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APPENDIX A 

PROOF OF THE PROPOSITIONS 

In this section, propositions presented in section 3.1.2 are proved. These 

propositions are developed for finding the optimal ordering of any two jobs for 

minimizing weighted earliness penalty. We consider the cases where two jobs are 

not possible to complete at their due-dates due to conflict (see Fig A.1). From Fig. 

A.1, if we would like to obtain optimal non-conflict ordering of two jobs, at least, a job 

must be leftward shifted. Rightward shift can not be employed, since it causes 

tardiness of jobs, a violation of constraints. There is no exact mle to select jobs to be 

leftward shifted jobs. It depends on the conditions and parameters of the jobs, 

intuitively, we would like to schedule a job with the largest eariiness penalty (E,) 

closer to its due-date. However, such simple rule may not always guarantee optimal 

ordering. Jobs with small earliness penalty and small processing time (t,) may have 

higher priority to schedule closer to their due-dates than jobs with high earliness 

penalty and high processing time. Thus, the ratio of earliness penalty and 

processing time (E, / t,) may be more suitable for scheduling consideration than 

simply using only the eariiness penalty. Based on the weighted longest processing 

time njle, WLPT 'in [31], jobs with larger V7( where Y) = E,/f/) must schedule closer to 

their due-dates than jobs with smaller Yj value. In WLPT rule [31], if the WLPT 

sequence (i.e. Yi:^2 sY3<. where Y„ is the n^^ job on the sequence) 

results in a schedule that does not have any tardy jobs, then this sequence is 

optimal. The WLPT rule can not be directly applied to the work reported in this 

research, since the WLPT sequence may not yield a schedule without any tardy 

jobs. For example, job 1 has 5 units of processing time, due-date at 5, and 10 unit 

cost/unit time for eariiness penalty. Job 2 has 5 units of processing times, due-date 

at 10, and 5 unit cost/unit time for eariiness penalty. If the WLPT rule is employed, 

the schedule is 2-^1. These sequence causes job 1 to be tardy and this is 

unacceptable in this research. To deal with this problem, five propositions are 

explored for optimal ordering between two conflict jobs based on E//f„ due-dates of 
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i 

i j 

i 

Di Dj 

Figure A.1 Jobs / and J overlap each other, if each completes on its due date 

both jobs, and sonne other conditions. These five propositions are mathematically 

derived as discussed below. 

Proposition 1. For the case where jobs / and j are not possible to complete 

E E 
exactly on their due-dates due to conflict, if — < — and Di < D, , then the optimal 

non-conflict ordering between jobs / and j is that job / precedes job j (i-fj) as shown 

in Fig. A.2. 

i 
j 

i 

Figure A.2 Illustration of the proposition 1 
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Proof. Suppose that the cost of j-*i (Fig. A.3a) is less than i^' (Fig. A.3b). 

(a) 

i J 

Di Dj 

Figure A.3 Proof of proposition 1 

(b) 

D. Dj 

J-^ 

(Dj - (Di - t i ) )Ej  

(Dj -Di -^t i )Ej  

(Dj - D, )Ej + ti Ej 

< 

< 

< 

(Di - (Dj - t j ) )Ei  

(Di- Dj + tj )Ei 

(Di  -  Dj)Ei  +  t j  E i  

Since (Dj - Di) is positive and (Di - Dj) is negative, and f,Ey > t j  E i ,  then the 

relation {Dj-Di)Ej + tiEj < (Di -Dj)Ei + fyE, is a contradiction. Therefore, proposition 1 is 

true. 

Proposition 2. For the case where Di< Dj, and both jobs / and j 

are not possible to complete exactly on their due-dates due to conflict, if 

(D, -Dj)< , then the optimal non-conflict ordering between jobs / and j is 

that job / precedes job j (i j), otherwise J -> i (see Fig A.4). 
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j 

i 

Di Dj 

I 
1 

' 1 j 

Di Dj 

Di Dj 

Figure A.4 Illustration of the proposition 2 

Proof. For the case that cost of i-fj (Fig. A.5(a)) is (ess than j-*i (Fig. A.5(b)), 

i 1 j 

D. DJ 

(a) (b) 

Figure A.5 Proof of proposition 2. 

(D, - (Di - t j ) )Ei  

(Di -  Dj  +  t j )Ei  

(Dj  -  Dj)Ei  +  t j  E ,  

(Di -Dj )Ei+(Di-Dj )Ej  

(Di -Dj )  

< 

< 

< 

< 

< 

j-^ 

(Dj - (D , - t , ) )Ej  

(Dj -Di -^t i )Ej  

(Dj - Di )Ej + ti Ej 

t i  E j  -  t j  E i  

t -Ej  t jEi  
( E , ^ E . )  

Di Dj 
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On the other hand, if (Di - Dj) > (ti Ej - tj E,) / (E-, + Ej) ,  then j—H .  The 

proposition 2 is proved. 

Proposition 3. For the case where jobs / and j  are not possible to connplete 

exactly on their due-dates due to conflicts between jobs /, j and k where k is already 

£ E 
scheduled. If — < —, then the optimal non-conflict ordering between jobs / and J is 

that job / precedes job j. 

For example, in Fig. A.6, suppose a third job (i.e. job k)  is already scheduled for 

processing between the t ime per iod f rom B to  B* and the due-dates of  jobs /  and j  

fall within this time period (i.e. B < D„ Dj < B* ). Thus jobs / and / can not be 

E E 
processed between B to B*. If then the optimal non-conflict ordering is that 

i  j  and the completion time of job j  is at time 8. 

; t 

k 
• ' 1 J 

k 

J t 
i 
i i 

t 
i 
i 

t 
i 
i 

B B Di Dj B* 

Figure A.6 Illustration of the proposition 3 

Di Dj B* 
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J  i  1 J  

B Di Dj B» 

(a) 

B 

(b) 

Di Dj B» 

Figure A.7 Proof of proposition 3. 

Proof. Suppose that the cost of j-^n (Fig.A7(a)) is less than (Fig.A7(b)) 

(Di - (Dj -WEf^(Dj- (Dj -T- t i ) )Ej  <  (Di - (Dj -T- t j  ) )Ei  ̂  (Dj - (Dj -V)Ej  

(Di - Dj)E, + TEi + TEj + t/Ej < (Di — Dj)Ei + TEi + tjEi + TEj 

ti Ej < tjEi 

(Ej/ t j )  < (Ei / t i )  

E  E  
Since the relation contradicts the stated condition ——, so proposition 3 

Is proved. 

Proposition 4. For the case where job k is already scheduled, and job j is 

not possible to complete exactly on its due-date due to conflicts between jobs j and /, 

and jobs j and k, and job / is not possible to complete exactly on Its due-date due to 

E E 
conflict between jobs / and j (see Fig. A.8(a)), If y-< —, then the optimal non-

conflict ordering between jobs / and j is that job / precedes job j (i j). 
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For example, in Fig A.8, suppose a third job (i.e. job k) is already scheduled for 

processing between the time period from B to B* and the due-date of job j falls within 

t h i s  t i m e  p e r i o d  ( i . e .  8  <  D j  < B * ) .  T h u s  j o b  j  c a n  n o t  b e  p r o c e s s e d  f r o m  t i m e  B  t o  D j .  

E  E  
Similariy, job / has conflict with job j, but not with job k. If , then the optimal 

non-conflict ordering is that / -:>/and the completion time of job j is at time B. 

1 t 

Ic i 1 j k 

j i • 

j i 
i • 

j 

Dj B Dj B* Di B DJ B* 

(a) (b) 

Figure A.8 Illustration of the proposition 4 

Proof same as proposition 3. 

Proposition 5. For the case where job k is already scheduled, and job j is not 

possible to complete exactly on its due-date due to conflicts between jobs j and /, 

and jobs j and k, and job / is not possible to complete exactly on its due-date due to 

E  E  
conflict between jobs / and j (see Fig. A.9 (a)), if — > — and (D, - Dj + T) < 

h ^ J 

where T is the lenght of time that job j can not be processed until its 
( E ,  + E j )  

due-date due to the conflict between jobs j and k, then the optimal non-conflict 

ordering between jobs / and j is that job / precedes job j (/ -*• j). On the other hand, if 

E .  t  E  •  t  E  
—^ — and (Di - D; + T) > , then the optimal non-conflict ordering 
t .  t ,  ( E , + E , )  
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between jobs / and j is that job j precedes job / 0 ' )• This proposition can be 

shown as in Fig A.9. 

In Figure A.9, suppose that job k is already scheduled for processing between 

the time per iod from B to  B* and the due-date of  job j  is in  this  t ime per iod ( i .e .  B <Dj  

<B*). Thus job J can not be processed from B to O,. Similarly, job / has conflict with 

E  E  
job j, but not with job k. In this case, T = Dj -  B.  \i (^i -  Oj +  T)  <  

then / j as in Fig. A.9(b). If — > — and (D, - D, + T) > 
( ^ , + ^ j )  t .  t j  

then j -> / as in Fig. A.9(c). 

Figure A.9 Illustration of the proposition 5 
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Proof. For the case that cost of (Fig. A.9(b)) is less than j-^ /(Fig. A.9(c)), 

M y-> i  
(Dj - (Dj - T))Ej + (D,  -  (Dj  -T- t j  )E;  <  (Dj  -  (D;  -  t , ) )  Ej  

TEj + (Di- Dj)Ei + TE, + tj E, < (Dj — Di )Ej +1, Ej 

(Ej + Ei)T+(Di-Dj)Ei-(Dj-Di)Ej < t,Ej - tjEi 

(Ej + r + (Di - Dj)( Ej Ei) < t, Ej - tj E, 

(Di -Dj -^T)  <  
~t ,E,  

(E,  +E, j  

This proves the proposition. On the other hand. If (Di -  Dj  +  7]) > 

-  t j  E i )  /  (Ei  +  Ej ) ,  then j-» . The proposition 5 is proved. 
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APPENDIX B 

THE OW & MORTON ALGORITHM 

This algorithm was presented by Ow and Morton [31] in 1989. In this 

algorithm, the priorities of unscheduled jobs are determined when the machine 

becomes available. The highest priority job is selected to schedule next. The priority 

rule is based on the slack time of unscheduled jobs at the moment that the machine 

becomes available, and the value of a parameter k. The value of parameter k is 

assigned by the scheduler. It is an average number of jobs that the scheduler would 

like to see when a sequence decision is to be made. The steps of the algorithms are 

as presented below. 

Algorithm 

Step 1. Set ETIME = 0, 7r= 0, a=J, and set k (parameter). 

Step 2. For all a, calculate the priority of job /, P,fs,), at time ETIME : 

Step 3. Schedule the highest priority job /; 

Starting time of job / = ETIME] 

Completion time of job / = starting time of job / + t,. 

Step 4. Set ETIME - completion time of job /, tt*- 7r+{i}. a - a -{i}. 

Step 5. If I cr| = 0, stop, otherwise, go to step 2. 

W, if s, < 0 

- E, otherwise 
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Where Wi = the tardy cost rate (costs/unit time) of job /, 

Ei = the early cost rate (costs/unit time) of job /, 

t = the average processing time, 

N = the number of jobs, 

k = the selected parameter {1  <  k  <  N) ,  

Dj = due-date of job /, 

ti = processing time of job /, 

ETIME = the earliest available time of the machine, 

s, = the slack time of job / at time ETIME (Si = D, - ETIME — t/). 

Pi (Si) = the priority of job / with slack time s,. 

n: = the set of secheduled jobs, 

cr = the set of unscheduled jobs. 

J = the set of all jobs. 
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APPENDIX C 

ALGORITHM ILLUSTRATION 

C.1 Algorithm I illustration 

To illustrate the steps of the algorithm I, consider example 3.1 in Chapter 3 , 

whose parameters are described as in Table C.1. The steps of employing algorithm I 

to example 3.1 is illustrated as follows: 

Table C.1 Parameters of example 3.1 
Job 1 2 3 4 5 6 7 8 

ti 3 4 9 10 10 5 7 2 

Di 80 80 75 66 64 60 50 43 

Ei 6 4 9 2 3 7 5 1 

Yi 2 1 1 0.2 0.3 1.4 0.71 0.5 

Step 0. Initialization 

Oa. Set k=0, {1,2.3,4.5,6,7,8}, TIME = 80. 

Ob. For each is cr, set Si= <!>, Y,- —. 

Step 1. Construct an ideal solution 

1a. Ci = 80, Si = 77. C2 = 80, S2 = 76, C3 = 75, S3 = 66, C4 = 66, S4 = 56, 

C5 = 64, Ss = 54. Ce = 60, Sg = 55. C7 = 50, S7 = 43, Cg = 43, Se = 41 

(see Fig C.1). 

lb. There are conflicts between jobs. Go to step 2. 

Step 2. Select i *  ~  1  (D i=  T IME) .  

Step 3. Set Ci = 80, Si = 71, and 5  ̂ - {2} ( since D2 > Si). 

Step 4. Since Yi > Y2 , go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 77. Schedule job 1 at Ci = 80, Si = 77 (see Fig C.2). 
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6 
• » 
ss so 

7 
• 

76 ao 

1 
• • 

64 

30 40 50 60 70 80 90 

Figure C.1 Ideal solution for example 3.1 

^ 1 ^ 
77 80 

30 40 50 60 70 80 

Figure C.2 Scheduled job 1 of example 3.1 

90 
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Step 7c. cT= {2.3,4.5,6,7,8}. ;r= {1} 

Step 7d. I cr| 0 go to step 2. 

Step 2. Select i *  =  2  (D2> T IME) .  

Step 3. Set C2 = 77. S2 = 73, and S2 - {3} 

Step 4. Since Y2 = Y3 , go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 73. Schedule job /*at C2 = 77, 82 = 73 (see Fig. C.3). 

2 I 
• — •  

73 77 80 

30 40 50 60 70 80 90 

Figure C.3 Schedule job 2 of example 3.1 

Step 7c. a ={3,4,5,6,7,8}, Tt= {1,2} 

Step 7d. I cr| 0 go to step 2. 

Step 2. Select i* = 3 (D3 > TIME). 

Step 3. Set C3 = 73, S3 = 64, and 63 = {4} 

Step 4. Since Y3> Y4 , go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 64. Schedule job 3 at C3 = 73, S3 = 64 (see Fig. C.4). 
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3 2 I 
• • • • 
64 73 77 80 

30 40 50 60 70 80 90 

Figure C.4 Schedule job 3 of example 3.1 

Step 7c. cr= {4,5,6,7,8}, n- {1.2,3} 

Step Y d .  I crI 0 go to step 2. 

Step 2. Select i* = 5 (Ds = TIME, and Y5> Ya). 

Step 3. Set C5 = 64, S5 = 54, and SS^ {4,6} 

Step 4. Since Ye > Y5 , Ye > Y4 go to Step 5. 

Step 5. Select j* = 6. 

Step 6a. Calculate T5 = 0. 

t  E  - t  E  
Step 6b. Since (De — D5 +T5)= -4 > ^ = - 5.5, then job 6 is selected to be 

( E , + E J  

job /* instead of job 5. Set C5 back to be its due-date (C5 = 64, S5 = 

54). Set R = 6. and go to step 3. 

Step 3. Set Cg = 60, Sg = 55, and = {4,5} 

Step 4. Since Vg > V5 and Vg > Y4 go to Step 7 . 

Step 7a.There is imbedded idle period. Set k = 1 . Ai = (60, 64). 

Step 7b. TIME = 55. Schedule job 6 at Cg = 60, Sg = 55 (see Fig. C.5). 
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6 3 2 1 
• • • • • • 

55 60 64 73 77 80 

30 40 50 60 70 80 90 

Figure C.5 Schedule job 6 of example 3.1 

Step 7c. cr= {4,5,7,8}, 7r= {1,2,3,6} 

Step 76. \ cr j 0 go to step 2. 

This procedure is repeated for the rest of the jobs. Based on the algorithm, 

jobs 5, 7, 8, 4 are scheduled respectively as shown in Fig. C.6. 

After job 4 is scheduled, the problem contains |cr | = 0. Then, the algorithm 

moves to step 8 for calculating the total weighted earliness cost. 

4 8 7 5 6 3 2 1 
• » • • • • • • «—• 
26 3638 45 55 60 64 73 77 80 

20 30 40 50 60 70 80 

Figure C.6 Job schedule for example 3.1 

90 
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Step 8. Calculate total weighted earliness cost, Z = 147 unit cost. 

Step 9. Keep the solution from step 8 as the current best solution by setting 

S', = 77. C, = 80. S'2 = 73, C'z = 77, S'z = 64, C'3 = 73, S'4 = 26, C= 36,S 5 

= 45, C's = 55, S 6 = 55, C e = 60, S'7 = 38, CV = 45, S s = 36, C'a = 38,K' = t, 

= C60, 64;, Z' = 147. 

Step 10. There is an imbedded idle time, A'i = (60, 64), then go to step 11. 

Step 11a. Set fit as the set of jobs that are scheduled before A'i and are able 

to fill m A'i, /3i = (5). 

Step lib. Assign job 5 to fill A'i = (60, 64). C5 = 64, 85 =54. Since 85 < 60, thus 

jobs 6,7,8 and 4 must be leftward shifted. 

Step 11c. Set jobs 6,7,8 and 4 in an ideal form, set cr= {4,6,7,8} and set TIME. 

= S5 (i.e. 54). The schedule is as shown in Fig. C.7. 

43 so 56 

54 

66 

64 

2 I 
• * 

73 77 80 

42>3 55 60 

30 40 50 60 70 80 90 

Figure C.7 Assign job 5 to fill in the imbedded idle time period A'i s (60, 64) 

Step 2. Select i* = 6 CDg > TIME and Ye > Y4). 

Step 3. Set Cg = 54, Sg = 49, and Se- (4, 7} 

Step 4. Since Vg > , and Y6> Yj, go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 49. Schedule job 6 at Ce = 54, Sg = 49 (see Fig. C.8). 
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•-

43 

-• 
50 

•-
56 

-• 

66 

6 
•-
49 54 64 

-• • • 
73 77 80 

30 40 50 50 70 80 90 

Figure C.8 Schedule job 6 of example 3.1 after assigning job 5 to fill A'i - (60, 64) 

Step 7-C. cr= {4,7.8}, n- {1,2.3.5,6} 

Step 7-D. I <t| 0 go to step 2. 

Step 2. Select i* = 7 CD7 = TIME, and Y7> Y4). 

Step 3. Set C7 = 49. S7 = 42. and S3 = {8.4} 

Step 4. Since Y7> Y4, Y7>Ys, go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 42. Schedule job 7 at €7 = 49. 87 = 42 

Step 7c. a = {4,8}, n = {1.2.3.5,6.7} 

Step 7d. I cr I 0 go to step 2. 

Step 2. Select /* = 8 (Da = TIME, and Y8> Y4). 

Step 3. Set Ca = 42, Sa = 40. and Sa = {4} 

Step 4. Since Vs > >4 , go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 40. Schedule job 8aXCa = 42.Sa = 40 

Step 7c. cr= {4}. tc- {1.2,3,5,6,7,8} 

Step 7d. I cr| 9!: 0 go to step 2. 

Step 2. Select i *  =  4 ( D 4 >  T I M E ) .  
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Step 3. Set C4 = 40, S4 = 30, and ^4 = ^ 

Step 4. Go to Step 7 . 

Step 7a. No imbedded idle period. 

Step 7b. TIME = 30. Schedule job 4 at €4= 40, 84 = 30 (see Fig. C.9). 

• • 
40 42 30 49 54 64 73 77 80 

30 40 50 60 70 80 90 

Figure C.9 The best job schedule obtained from Algorithm I 

Step 7c. a= (p, 7r= (1,2,3,4,5,6,7,8} 

Step 7d. I cr| = 0 go to step 8. 

Step 8. Calculate total weighted earliness cost, Z = 130 unit cost. This is better than 

the Z = 147 previously obtained. 

Step 9. Keep the solution from step 8 as the current best solution by setting 

S'i = 77, C'i = 80, S'2 = 73. C'z = 77, S'3 = 64, C'3 = 73, S'4 = 30, C'4 = 40,S'5 

= 54 , C's = 64, S'e = 49, C'e = 54, SV = 42, C'7 = 49, S'g = 40, C'g = 42, K' = 

0, Z' = 130. 

Step 10. Since there is no imbedded idle period, go to step 14. 

Step 14. Schedule all job i e J where S, = S,-. and C, = C,-., and stop. 
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C.2 MCE algorithm illustration 

To illustrate the steps of the MCE algorithm (see pages 67-69), consider 

example 4.1 in Chapter 4 (page 61), whose product structures and parameters are 

described as in Figure 4.1 (page 58) and Table 4.1 (page 62), respectively. The ideal 

solution of example 4.1 is as shown in Figure 4.2 (page 63). Lets consider the latest 

conflict set consisting of operations 1011, 1111, and 2011. This conflict set can be 

eliminated by MCE algorithm as follows: 

Step 0. Initialization 

Oa. Set a= {O(ioii). 0(iiii), O(20ii)}, <f>, TIME = 500. 

Ob. Set S(ioii) - <f>, S(iiii) = (f>, S(2oii) - <f>, Y(ioii) - 0.7, Ypm) = 1, Y(2oii) = 0.36. 

Stepi. D(ioii) — 500, D(2oii) ~ 500. — 400. 

Step2. P = {O(2oii), O(ioii)}. 0(rjkty- 1011. 

Step 3. Set Cwn = 500, Sioii = 400. The O(2oii) conflicts to Oc70Yt;.then 

5(1011 )={0 (2011]} • 

Step 4. Y2011 < Y1011, go to step 7. 

Step 7. Schedule O(io i i )  on machine 

7a. Set C1011 - 500 and S1011 = 400 (see Fig C.10), TIME = 400. 

7b. (J  = (0(2011) ,  0(1111)}  AOD {O ( io i i ) } -

7c. Since |cr| 0, then go to step 2. 

Step2. P = {0(2oii). 0(iiii)}. O(ijfd)' - 1111. 

Step 3. Set C( i i i i )— 400 ,  S( i i i i )  — 360  .The O(2oii) conflicts to Octjfr;. then 

S(llll)=(O(2011l}-

step 4. Y2011 < Y1011, go to step 7. 

Step 7. Schedule 0( i i i i )  on machine 

7a. Set C1111 = 400 and Sim = 360 (see Fig C.11), TIME = 360. 

7b.  c r =  { O ( 2 o i i ) }  and  ; r=  { O ( i o i i ) ,  0 ( i i i i ) } .  

7c. Since |cr| 0, then go to step 2. 
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1011 

M/C #1 ^ 
400 500 

150 200 250 300 350 400 450 500 550 

Figure C.10 Schedule operation 1011 in example 4.1 

M/C #1 
n i l  1011 

360 400 500 

150 200 250 300 350 400 450 500 550 

Figure C.11 Schedule operation 1111 in example 4.1 
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Step 2. P = {0(2011)}- O(ijicj)- ~ 2011. 

Step 3. Set C(2oii) = 360 , S(2oii) = 220 . There is no any job that conflicts with O(2022)-

Go to step 7. 

Step 7. Schedule O(2oii) on machine 

7a. Set C2011 = 360 and S2011 = 220 (see Fig C.12), TIME = 220. 

7b. (T= ^and ;r= {O(ioii), Opm)^ 0(2oii]}-

7c. Since \a\ -0. then MCE algorithm stops. 

2011 1111 1011 

M/C #1 
220 360 400 500 

150 200 250 300 350 400 450 500 550 

Figure C.12 Schedule operation 2011 in example 4.1 
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C.3 Algorithm V illustration 

To illustrate the steps of algorithm V (pages 69-72), consider example 4.1 in 

Chapter 4 (page 61), whose product structures and parameters are described as in 

Figure 4.1 (page 58) and Table 4.1 (page 62), respectively. 

Step 0. Set M = (p. For each operation, set it as an unscheduled operation. 

Step 1. Construct an ideal solution. 

la. S(ioii) = 400, C(ioii) = 500, Spm) — 360, — 400, S(1312) — 320, C(1312) 

= 360, S(I412) - 300, C(1412) = 360, S(1213) - 350, C(i2i3) = 400, S(2oii) -

360, C(2oii) - 500, S(2ii3) - 260, C(2ii3) - 360, S(2212) -310, C(22i2) = 360, 

S(2312) = 240, C(2312) = 360. 

Step 2. Determine machine conflict operation 

2a. Let A be the set of unscheduled operations, which are ready operations. 

A = { 0(1011), O(2011)}-

2b. Select the operation = O(2oii)-

2c. Ocrojj; conflicts with 0(2oii}. Set f2(2oii) ~ {O(ioii. O(2oii]} and go to step 3. 

Step 3. Apply MCE method to eliminate machine conflicts of all operations in f2(2oii). 

The sequence obtained from MCE method is 2011-^ 1011. Select O(ioii) to 

schedule (i.e., S(ioii) = 400, C(ioii) = 500). Set O(ioii) as scheduled operation. 

Go to step 4. 

Step 4. Since some of operations in the problem are not yet scheduled, then set all 

unscheduled operation in an ideal solution while keeping unchanged the 

schedule of operations O(ioii) (see Fig. 4.2 page 63 )and go to step 2. 

Step 2. Step 2. Determine machine conflict operation 

2a. Let A be the set of unscheduled operations, which are ready operations. 

A = { 0(1111),  O(2011)}.  

2b. Select the operation 0(r,ki)- - 0(2oii)-

2c. 0(1111) conflicts with 0(2oii). Set i7(2oii) ~ {^(iiii). O(2oii)} and go to step 3. 
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Step 3. Apply MCE method to eliminate machine conflicts of all operations in f2(2oii). 

The sequence obtained from MCE method is 2011-> 1111. Select 0(iiii) to 

schedule (i.e., = 360, Cdm) = 400). Set 0(iiii) as scheduled operation. 

Go to step 4. 

Step 4. Since some operations in the problem are not yet scheduled, then set all 

unscheduled operation in an ideal solution while keeping the schedule of 

operations O(ioii) and 0(iiii) fixed as determined (see Fig. 4.2 page 63 ) and 

go to step 2. 

Step 2. Step 2. Determine machine conflict operation 

2a. Let Z be the set of unscheduled operations, which are ready operations. 

Z = { 0(2Q11), 0(1312). 0(U12)}-

2b. Select the operation Oojur ~ 0(2oii). 

2c. 0(2011} conflicts with O(ioii) and (see Fig. 4.2, page 63). But O(ioii) 

and 0(iiii) are scheduled operation in machine 1. Then, schedule 0(2qii) 

on machine 1 at the starting time of 0(iiii) (i.e., C(2oii) = 360 and S(2oii) = 

220 ). Set O(2oii) as a scheduled operation. Go to step 4. 

Step 4. Since some operations in the problem are not yet scheduled, then set all 

unscheduled operation as an ideal solution while keep the schedule of 

operations O(ioii), 0(iiii), and O(2oii) fixed (see Fig. 4.3 page 64 ) and go to 

step 2. 

Step 2 to step 4 of algorithm V is repeated until all unscheduled operation are 

scheduled as shown in Figure 4.5 (page 65), then the algorithm goes to step 5. 

Step 5. Calculate total earliness cost of the solution as shown in Figure 4.5 (page 

65). The total earliness cost = 9300 units. 

Step 6. Set the current solution as shown in Figure 4.5 (page 65) to be the current 

best solution, called R. Also set R'i ^R. 

Step 7. Search for improved solution by evaluating the changing of the 
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sequence position of movable operations in the current schedule. For each 

operation, 0(ijMy ,in R, repeat the step 7a. 

Let consider Oojuy = 0(1312) in Figure 4.5 (page 65). 

7a. Determine the operations which are scheduled before 0(i3i2) in R and 

can be moved to the position of 0(i3i2) • Let P(i3i2) be the set of 

operations that can be moved to take the position of 0(i3i2) in the R, then 

P(1312) = { 0(1412)} and 0(ijMr = 0(1412) in this example. 

7b. Remove operation 0(1312} from R and set 0(1312) to be an unscheduled 

operation. 

7c. Let LTIME be the latest available time on machine after removing 0(i3i2)-

(i.e. LTIME = S(1312)= 360). 

7d. Schedule Ofur2; into the previous position of 0(t3i2) in R, set C(ur2) = 360 , 

Sfui2) = 300. Set 0(ui2j3S a scheduled operation. 

7e. Set all operations, Oojk/j. except 0(i4i2j which are previously scheduled 

before 0(i3r2) in R (i.e., Q/w; <320) as unscheduled operations. 

At this step, 0(1312}, 0(2212). 0(2312). and 0(2ii3) are set as unscheduled 

operations. 

7f. Repeat step1 - step5 to schedule the unscheduled operations (see 

Figure C.13), called Ri', and keep Ri' in M. 

7g. Reset R<^Ri'. 

Repeat step 7 for the 0(ijuy = 0(2212) and 0(iiii) in Figure 4.5 (page 65). The 

solutions also are kept in M. Since all the solutions in M are not better than the 

solution as shown in Figure 4.5, then the solution as shown in Figure 4.5 is the best 

solution. Then, the algorithm V stops. 
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2113 1213 

M,/C3 
tzo 220 

2312 2212 1312 1412 

M/'C2 
170 220 

M/C 

2011 1111 1011 

360 

0 100 200 300 400 500 600 

Figure C.13 The schedule of example 4.1 after moving operation 1412 to 
the position of operation 1312 in Figure 4.5 

C.4 Algorithm VI illustration 

To illustrate the steps of algorithm VI, consider example 4.2 in Chapter 4 

(page 76), whose product structures and parameters are described as In Figure 

4.7(page 77) and Table 4.2(page 76), respectively. The step by step of employing 

algorithm VI to example 4.2 are described as follows: 

Step 0. Set M = ^ and Pi = P2 = P3 = ^. 

Step 1. Employ algorithm V to construct an initial schedule, called schedule R (see 

Figure 4.9 page 79). 

Step 2. Check feasibility of R. Since R is an infeasible solution (i.e., 8(3413) < 0), 

go to step 3. 

Step 3. While maintaining precedence relationship between operations, perform 
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rightward shift in R until feasible solution is obtained (i.e., 8(3413) = 0). This 

schedule is as shown in Figure 4.11 (page 80). Keep this solution as a 

feasible solution in M, where M is a set of feasible schedules. Set schedule 

back to R (see Fig. 4.9 page 79 ). 

Step 4. Select the earliest starting time of all operations 8 in R (i.e., S^p/;-

<^inin^ Kyw)}). where B is the set of all operations in R. In this step, S^,yw;« <0. 

Let G be the appropriate amount of tardiness. Set G = |Sc34f3j| = |-8| = 8 (see 

Figure 4.9 page 79). 

Step 5. For each product /, set the virtual due-date of product equal to the actual 

due-date plus the appropriate amount of tardiness (i.e., virtual due-date 

of product /= D/+ G ). and repeat the following steps (5a-5c). 

At this step there are three virtual due-date sets "68-50-40", "60-58-40", and 

"60-50-48". 

Lets consider "68-50-40" due-date set. 

5a. Employ algorithm V to schedule the sequence of operations based on 

"68-50-40" due-date set. The schedule is the same as shown in Figure 

4.11 (page 80). 

5b. It is a feasible solution. Then keeps this schedule in M, 

5c. Reset the schedule back to R (see Fig. 4.9 page 79). 

Repeat step 5 for the "60-50-48" and "60-58-40" due-date sets and keep the 

feasible solutions in M. After repeating all due-date sets go to step 6. 

Step 6. Select the best solution in M, called R', and set R = R'. In this example, the 

best solution is the schedule from "68-50-40" due-date set. The solution is 

selected to be the current best solution at this moment. 

Step 7. Set M = <z>. For each product / in R (product 1, 2, and 3), do the following 

steps (7a-7d). 

Lets consider product 1. 

7a. Remove all operations of product 1 from R (see Figure C.14). 

7b. Let R* be the schedule after removing product 1 from R. For each 
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Figure C.14 A schedule In example 4.2 after removing product 1 from the schedule In Figure 4.11. 
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operation 0(ijuy in R*, do the steps (7b(1 )-7b(2)). 

7b(1). Shift 0(ijkiyio the right without violating precedence constraint. 

Let Q(,jkiy be the amount that Of,yw; can be shifted to the right in 

time. Since no operations in R* (see Figure C.I4) can be shifted 

to the right without violating precedence constraint (i.e., Q(ijkiy = 

0). Then the only member of Pi is 0 . Set Pi = {0}. 

7b(2). Set the schedule back to R* (see Fig. 4.11 page 80). 

7c. Let Pi(a) be a member of Pi. (i.e., Pi(a) = 0) do the following steps. 

7c(1). Set virtual due-date of product 1 equal to the due-date of 

product 1 plus Pi(a) (i.e., 68+0). Then the due-date set is still 

"68-50-40". 

7c(2 ) .  Based on virtual "68-50-40" due-date set, the solution is still the 

schedule shown in Figure 4.11. 

7d. Reset the schedule back to R. 

Step 7 is repeat for products 2 and 3 (i.e., P2 and P3). The solutions are kept 

in M and go to step 8. 

Step 8. Select the best solution in M, called R'. Since the best solution is as shown 

in Figure 4.11 (page 80), then there is no improvement in step 7. Algorithm 

VI stops. 
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APPENDIX D 

SENSITIVITY ANALYSIS 

In this section, sensitivity analysis is performed on two problem types (i.e., 

minimizing earliness penalty and minimizing the sum of weighted earliness and 

tardiness penalties) on single machine problems. In minimizing earliness penalty 

problem, sensitivity analysis is studied in two different cases; 

1) Variation in the percentage of conflicts in an ideal solution where the 

percentage of conflict is defined as the percentage of processing times of operations 

that overlap in an ideal solution. Mathematically, this is defined as 

/ Overlapped processing times of operations in ideal solution inn 
P&rCGfltSQG of conflicts —\ Total processing times of all operations inihe problem ) 

( i r . )  
2) Variation of the ratio of average Y/to the number of jobs (i.e., 

£• where ^ = 7^ )• This is the average ratio of earliness penalty and processing time to 

the number of jobs. 

In the problem of minimizing the sum of weighted earliness and tardiness 

penalties, the sensitivity analysis is studied under four different cases; 

1) Variation of the the percentage of conflicts in ideal solution. 

fsj;] 
2) Variation of the ratio of average V/to the number of jobs (i.e., 

V  ̂where —~r)- This is the average ratio of earliness penalty and processing time 

to the number of jobs. 

fiz.l 
3) Variation of the ratio of average Z, to the number of jobs (i.e., 

where Z- = ̂  ). This is the average ratio of tardiness penalty and processing time 

to the number of jobs. 
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4) Variation of the average of ratio of eariiness penalty and tardiness penalty 

to the number of jobs (i.e., ——), 

The sensitivity analysis is limited to the single machine problem because of 

the fact that the optimality conditions derived for the single machine problem formed 

the basis for the subsequent problem cases, including the assembly job shop 

problems. 

In this section, four examples involving different number of jobs (i.e., 15, 20, 

25, 30 jobs) are randomly generated for the problem with eariiness cost minimization 

and another four problems of different sizes in job count (i.e., 15, 20, 25, 30 jobs) 

are randomly generated for the case of minimizing the sum of weighted eariiness 

and tardiness cost. 

In the case of the percentage of conflict variation, the due-dates of jobs are 

varied while the other parameters are unchanged. Only the eariiness penalties are 

varied In the case of average ratio of eariiness penalty and processing time 

variation. Only the tardiness penalties are varied in the case of variation of the 

average ratio of tardiness penalty and processing time. Both eariiness and tardiness 

penalties are varied when the case of variation of average ratio of eariiness and 

tardiness penalties is studied. 

Tables D.I to D.8 and Figures D.I to D.8 show the sensitivity analysis of 

problems with eariiness penalty minimization. Tables D.9 to D.24 and Fig. D.9 to 

D.24 present the sensitivity analysis of problems with the sum of weighted eariiness 

and tardiness penalty minimization. 

In studying sensitivity analysis, an example was first randomly generated. It 

means that all parameters were generated randomly. It consists of the processing 

times, eariiness penalties, and due-dates of all jobs in single machine problem with 

eariiness penalty minimization cases. For the cases of minimizing the sum of 

weighted eariiness and tardiness penalties, the processing times, eariiness 

penalties, tardiness penalties and due-dates of all jobs were randomly generated. 

The sensitivity analysis for the case involving variation in the percentage of conflicts 



www.manaraa.com

140 

was studied by changing the due-dates of jobs in the problem while keeping the 

other parameters (i.e., the processing time, earliness penalties and tardiness 

penalties) unchanged. The changing of due-dates effects the percentage of conflicts 

of jobs In an ideal solution. When the percentage of conflicts was changed 

algorithms I and 11 were applied to solve the problem and the results obtained by the 

two algorithms are compared to each other. This was the same for the case of 

algorithms III and IV. For example, in Table D.1 and Figure D.1, an example of a 15 

job size problem was randomly generated. Then the processing times and earliness 

penalties of all jobs were fixed while the due-dates were changed. It generated a set 

of percentage of conflicts, which ranged from 8% to 97%. Both algorithms I and II 

were applied to solve this set of problems. It showed that both algorithms yielded the 

same solution. In the 8% conflict case, algorithms I and II gave the same solution 

with 40 in total cost. The remaining problem instances with changes in percentage of 

job conflicts were similarly analyzed. 

For the case involving the variation of the average ratio of eariiness penalty 

f 1 
and processing time to the number of jobs (i.e., where ^ =7" ), only the 

eariiness penalties of jobs were changed while the other parameters were fixed. For 

example, in Table D.5 and Figure D.5, the range of average E/t was varied from 0.37 

to 2.1. Algorithms I and II were applied to solve this set of problems. In the 0.37 E/t 

case, both algorithms generated the same schedule with 277 in total cost. 

For the case involving the variation of the average ratio of tardiness penalty 

and processing time to the number of jobs (i.e., where ), only the 

tardiness penalties of jobs were changed while the other parameters were fixed. For 

example, in Table D.17 and Figure D.17, the range of average W/t was varied from 

1.7 to 4.32. Algorithms III and IV were applied to solve this set of problems. In the 

1.7 W/t case, algorithm III generated a schedule with 267 in total cost, which was 

worse than the schedule constructed by algorithm IV, which had 214 in total cost. 

For the case involving the variation of the average ratio of eariiness penalty 



www.manaraa.com

141 

fi^) 
and tardiness penalty to the number of jobs (i.e., ^), both earliness and 

tardiness penalties were randomly changed while the other parameters were 

unchanged. For example, in Table D.21 and Figure D.21, the range of average E/W 

was varied from 0.31 to 0.84. Algorithms III and IV were applied to solve this set of 

problems. In the 0.31 E/W case, algorithm III generated a schedule with 243 in total 

cost, which was the same schedule generated by algorithm IV. 

Table 0.1 Performance comparison of algorithms f & II relative to the 
percentage of conflict in a 15 job problem with earliness penalty 
minimization 

% Conflict Alg.l Aig.ll 
(total cost) (total cost) 

8 40 40 
30 180 174 
43 186 186 
47 310 310 
69 1033 1033 
97 2245 2245 

2500 -

2000 

01 o u 
1500 

a 1000 
o 

500 

20 40 100 0 60 80 

%of conflicts 

Figure D.I. Performance comparison of algorithms I & II relative to the 
percentage of conflict in a 15 job problem with earliness 
penalty minimization 
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Table D.2 Performance comparison of algorithms 1 & II relative to the 
percentage of conflict in a 20 job problem with earliness penalty 
minimization 

% Conflict Alg. 1 Alg. II 
(total cost) (total cost) 

28 137 137 
30 141 141 
34 86 86 
48 186 186 
55 268 267 
75 317 317 
76 383 443 
84 330 330 
86 669 669 
94 829 829 

900 -

0 
20 40 60 80 100 

%of conflicts 

Figure D.2. Performance comparison of algorithms I & 11 relative to 
the percentage of conflict in a 20 job problem with 
earliness penalty minimization 
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Table D.3 Performance comparison of algorithms I & II relative to the 
percentage of conflict in a 25 job problem with earliness penalty 
minimization 

% Conflict Alg. I Alg. ii 
(total cost) (total cost) 

34 375 375 
35 565 565 
54 461 461 
65 578 578 
85 709 709 
86 767 924 
91 824 824 

w o o 
a 
o 

-Alg. I 

.Alg. II 

30 50 70 

% of conflict 

90 

Figure D.3. Performance comparison of algorithms I & II relative 
to the percentage of conflict in a 25 job problem with 
earliness penalty minimization 
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Table D.4 Performance comparison of algorithms I & II relative to the 
percentage of conflict in a 30 job problem with earliness penalty 
minimization 

% Conflict Alg. 1 Alg. II 
(total cost) (total cost) 

18 160 160 
38 262 262 
50 304 304 
51 349 336 
59 277 384 
67 371 358 
70 394 394 
78 407 407 
82 403 403 

M o u 
5 o 

450 -

200 ^ 

-Alg. I 
-Alg. II 

10 30 50 70 

*/• of conflict 

90 

Figure D.4 Performance comparison of algorithms I & II relative to the 
percentage of conflict in a 30 job problem with earliness 
penalty minimization 
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Table D.5 Performance comparison of algorithms I & II relative to the ratio of 
earliness penalty and processing time in a 15 job problem with 
earliness penalty minimization 

Average E/t Alg.l Alg. II 
(total cost) (total cost) 

0.37 277 277 
0.52 346 337 
0.71 522 516 
0.91 687 641 
1.11 811 873 
1.29 1033 1033 
1.55 1301 1301 
1.73 1503 1503 
1.91 1705 1705 
2.10 1907 1907 

2000 -

^ 1400 

8 1200 
« 1000 
2 800 

-Alg.l 

0.5 1 

Avg. Bt 

1.5 

Figure D.5 Performance comparison of algorithms I & 11 relative to the 
ratio of earliness penalty and processing time in a 15 job 
problem with earliness penalty minimization 
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Table 0.6 Performance comparison of algorithms I & 11 relative to the ratio of 
earliness penalty and processing time in a 20 job problem with 
earliness penalty minimization 

Avg. E/t Alg. 1 Alg. II 
(total cost) (total cost) 

0.34 46 46 
0.43 77 77 
0.46 56 56 
0.64 86 86 
0.72 77 77 
1.09 164 164 
1.32 200 200 
1.52 230 230 
1.75 266 266 
1.97 302 302 

350 , 

300 J 

?50 , 

M O 200 ^ 
o 
iS 150 -
o 

100 

50 -

0 

-Alg. I 

.Alg. II 

0.5 1 1.5 

Avg Bt 

2.5 

Figure 0.6 Performance comparison of algorithms I & II relative to the 
ratio of earliness penalty and processing time in a 20 job 
problem with earliness penalty minimization 
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Table D.7 Performance comparison of algorithms I & II relative to the ratio of 
earllness penalty and processing time in a 25 job problem with 
earliness penalty minimization 

Avg. E/t Alg.i Alg. II 
(total cost) (total cost) 

0.43 239 239 
0.46 242 242 
0.52 269 265 
0.69 407 531 
0.89 565 565 
1.09 723 723 
1.29 880 880 
1.70 1192 1181 
1.90 1314 1314 

1400 -

1200 

1000 
0) 
o o 800 
3 o 

600 . 

400 

200 
1.5 2 0 0.5 1 

Avg. E/t 

Figure D.7 Performance comparison of algorithms I & 11 relative to the 
ratio of earliness penalty and processing time in a 25 job 
problem with earliness penalty minimization 
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Table 0.8 Performance comparison of algorithms I & II relative to the ratio 
of earliness penalty and processing time in a 30 job problem with 
earliness penalty minimization 

Avg. E/t Alg. 1 Alg. II 
(total cost) (total cost) 

0.50 94 94 
0.60 112 112 
0.80 148 148 
0.86 160 160 
1.01 184 184 
1.27 233 233 
1.47 270 270 
1.89 344 344 
2.30 416 416 

450 -

0 0.5 1 1.5 2 2.5 

Avg. E/t 

Figure D.8. Performance comparison of algorithms I & II relative to the 
ratio of earliness penalty and processing time in a 30 job 
problem with earliness penalty minimization 
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Table D.9 Performance comparison of algorithms III & IV relative to the 
percentage of conflict in a 15 job problem with the sum of weighted 
E/T penalty minimization 

% Conflict Alg.lli Alg. IV 
(total cost) (total cost) 

32 389 389 
39 362 362 
42 375 375 
45 371 371 
51 780 780 
58 580 567 
76 612 612 
84 685 687 
87 620 606 

20 40 60 80 100 

*/• of conflict 

Figure D.9. Performance comparison of algorithms III & IV relative to 
the percentage of conflict in a 15 job problem with the sum 
of weighted E/T penalty minimization 
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Table D.10 Performance comparison of algorithms III & IV relative to the 
percentage of conflict in a 20 job problem with the sum of 
weighted E/T penalty minimization 

% Conflict Alg.lll Alg. IV 
(total cost) (total cost) 

39 493 471 
41 308 306 
43 469 467 
45 523 509 
53 628 628 
61 863 817 
69 805 760 
76 665 611 
82 956 950 
86 870 864 

1000 . 

200 
30 50 70 90 

% of conflict 

Figure 0.10 Performance comparison of algorithms III & IV relative to 
the percentage of conflict in a 20 job problem with the sum 
of weighted E/T penalty minimization 
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Table D.11 Performance comparison of algorithms III & IV relative to the 
percentage of conflict in a 25 job problem with the sum of 
weighted E/T penalty minimization 

% Conflict Alg.lll Alg. IV 
(total cost) (total cost) 

0.24 330 330 
0.35 463 451 
0.36 417 417 
0.43 338 338 
0.58 1066 1049 
0.67 1087 1062 
0.78 1192 1117 
0.88 1328 1330 
0.91 1467 1467 
0.94 1399 1399 

% of conflict 

Figure D.11 Performance comparison of algorithms III & IV relative to 
the percentage of conflict in a 25 job problem with the 
sum of weighted E/T penalty minimization 
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Table D.12 Performance comparison of algorithms ill & IV relative to the 
percentage of conflict in a 30 job problem with the sum of weighted 
E/T penalty minimization 

% Conflict Alg.lll Alg. IV 
(total cost) (total cost) 

18 160 160 
38 262 262 
50 304 304 
51 349 336 
59 277 384 
67 371 358 
70 394 394 
78 407 407 
82 403 403 
86 426 426 

% Conflict 

Figure D.12 Performance comparison of algorithms III & IV relative to 
the percentage of conflict in a 30 job problem with the sum 
of weighted E/T penalty minimization 
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Table D.13 Performance comparison of algorithms III & IV relative to the ratio 
of earliness penalty and processing time in a 15 job problem with 
the sum of weighted E/T penalty minimization 

Avg Elt Alg. Ill 
(total cost) 

Alg.lV 
(total cost) 

0.28 339 339 
0.34 341 341 
0.42 343 343 
0.53 345 345 
0.68 382 350 
0.96 356 356 
1.23 362 362 
1.52 368 368 
1.80 374 374 
2.10 380 380 

g 365 
" 360 

0.5 1.5 2.5 

Avg. Eft 

Figure D.13 Performance comparison of algorithms III & IV relative to the 
ratio of earliness penalty and processing time in a 15 job 
problem with the sum of weighted E/T penalty minimization 
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Table D.14 Performance comparison of algorithms III & IV relative to the 
ratio of earliness penalty and processing time in a 20 job problem 
with the sum of E/T penalty minimization 

Avg E/t Alg. Ill 
(total cost) 

Alg.lV 
(total cost) 

0.33 
0.63 
0.76 
1.19 
1.44 
1.71 
1.99 
2.30 

306 
344 
367 
426 
452 
497 
542 
587 

301 
344 
351 
426 
450 
496 
542 
587 

total 
cost 500 

Avg. E/t 

• AJg. I l l  
-AJg.lV 

Figure D.14 Performance comparison of algorithms III & IV relative to the 
ratio of earliness penalty and processing time in a 20 job 
problem with the sum of weighted E/T penalty minimization 
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Table D.15 Performance comparison of algorithms III & IV relative to the ratio 
of eariiness penalty and processing time in a 25 job problem with 
the sum of E/T penalty minimization 

Avg E/t Alg. Ill Alg.lV 
(total cost) (total cost) 

0.45 218 218 
0.62 249 249 
0.88 281 281 
1.15 338 338 
1.36 380 380 
1.57 438 432 
1.70 472 440 
1.83 480 480 
2.10 522 522 
2.22 579 552 

700 

600 

M 500 
O 
u 400 
S 
o 300 

200 

100 

• Alg. Ill 
-Alg.lV 

0.5 1 1.5 

Avg. E/t 

2.5 

Figure D.15 Performance comparison of algorithms III & IV relative to the 
ratio of eariiness penalty and processing time in a 25 Job 
problem with the sum of weighted E/T penalty minimization 
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Table D.16 Performance comparison of algorithms III & IV relative to the ratio 
of earliness penalty and processing time in a 30 job problem with 
the sum of EfT penalty minimization 

Avg EJt Alg. Ill Alg.lV 
(total cost) (total cost) 

0.36 302 302 
0.48 325 325 
0.72 383 383 
0.90 438 438 
0.95 435 435 
1.21 500 500 
1.45 558 558 
1.68 793 613 
1.92 861 871 

«0 o u 

o 

Avg. Eli 

Figure D.16 Performance comparison of algorithms III & IV relative to the 
ratio of earliness penalty and processing time in a 30 job 
problem with the sum of weighted E/T penalty minimization 



www.manaraa.com

157 

Table D.17 Performance comparison of algorithms III & IV relative to the ratio 
of tardiness penalty and processing time in a 15 job problem with 
the sum of E/T penalties minimization 

Avg. W/t Alg. Ill Alg. IV 
(total cost) (total cost) 

1.70 267 214 
1.97 337 357 
2.24 271 267 
2.53 301 301 
3.07 332 332 
3.19 362 362 
3.60 392 392 
3.75 422 422 
4.04 452 452 
4.32 482 482 

500 . 

" 350 

Avg.W/t 

.Aig.lll 

-Alg.lV 

Figure D.17 Performance comparison of algorithms III & IV relative to ratio 
of tardiness penalty and processing time in a 15 job problem 
with the sum of weighted E/T penalty minimization 
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Table D.18 Performance comparison of algorithms III & IV relative to the ratio 
of tardiness penalty and processing time in a 20 job problem with 
the sum of E/T penalty minimization 

Avg. W/t Alg. Ill Alg. IV 
(total cost) (total cost) 

1.34 313 313 
1.67 328 328 
1.87 342 342 
2.14 363 363 
2.42 384 384 
2.70 405 405 
2.93 426 426 
3.49 468 468 
3.77 483 489 
4.04 510 510 
4.31 531 531 

550 

500 

450 

400 

350 

300 

2 3 4 5 1 

Avg. W/t 

Figure D.18 Performance comparison of algorithms III & IV relative to the 
ratio of tardiness penalty and processing time in a 20 job 
problem with the sum of weighted E/T penalty minimization 
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Table D.19 Performance comparison of algorithms III & IV relative to the ratio 
of tardiness penalty and processing time in a 25 job problem with 
the sum of E/T penalty minimization 

Avg. W/t Alg. Ill Alg. IV 
(total cost) (total cost) 

1.49 260 260 
1.72 269 269 
1.99 282 282 
2.26 299 299 
2.53 315 315 
2.82 338 338 
3.05 347 347 
3.32 363 363 
3.60 379 379 
3.87 401 401 

450 , 

<A O o 
350 ^ 

S 
o 300 

250 ^ 

200 

1 2 3 4 5 

Avg. W/t 

Figure D.19 Performance comparison of algorithms III & IV relative to the 
ratio of tardiness penalty and processing time in a 25 job 
problem with the sum of weighted E/T penalty minimization 
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Table D.20 Performance comparison of algorithms III & IV relative to the ratio 
of tardiness penalty and processing time in a 30 job problem with 
the sum of E/T penalty minimization 

Avg. W/t Alg. Ill Alg. IV 
(total cost) (total cost) 

1.09 288 288 
1.31 310 310 
1.53 333 333 
2.58 412 412 
2.82 435 435 
2.84 435 438 
3.06 458 458 
3.30 481 481 
3.53 504 504 
3.80 527 527 
4.03 550 550 

600 

500 

S 400 
3 o 

300 
"0 

.Alg. Ill 

-Alg. IV: 

200 

2 3 

Avg. W/t 

Figure D.20 Performance comparison of algorithms III & IV relative to the 
ratio of tardiness penalty and processing time in a 30 job 
problem with the sum of weighted E/T penalty minimization 
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Table D.21 Performance comparison of algorithms III & IV relative to the ratio 
of earliness penalty and tardiness penalty in a 15 job problem with 
the sum of E/T penalty minimization 

Avg. E/W Alg.111 Alg.IV 
(total cost) (total cost) 

0.31 243 243 
0.33 231 231 
0.37 240 240 
0.40 228 228 
0.47 250 250 
0.51 247 247 
0.59 269 269 
0.65 257 257 
0.79 277 277 
0.84 264 264 

total 
cost 

280 -

• K Alg.lll , 

-Q_AJg.lV; 

0.2 0.4 0.6 

Avg. E/W 

0.8 

Figure D.21 Performance comparison of algorithms III & IV relative to the 
ratio of earliness penalty and tardiness penalty in a 15 job 
problem with the sum of weighted E/T penalty minimization 
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Table D.22 Performance comparison of algorithms III & IV relative to ratio of 
earliness penalty and tardiness penalty in a 20 job problem with the 
sum of E/T penalty minimization 

Avg.E/W Alg.lll Alg.lV 
(total cost) (total cost) 

0.34 466 466 
0.42 426 426 
0.47 490 488 
0.50 475 464 
0.59 513 512 
0.63 504 503 
0.68 507 507 
0.72 540 540 
0.76 531 531 
0.84 657 573 

total 
cost -Alg.lll 

-Alg.lV 

450 

400 

0.2 0.4 0.6 

Avg. E/W 

0.8 

Figure D.22 Performance comparison of algorithms III & IV relative to the 
ratio of earliness penalty and tardiness penalty in a 20 job 
problem with the sum of weighted E/T penalty minimization 
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Table D.23 Performance comparison of algorithms III & IV relative to the ratio 
of earliness penalty and tardiness penalty in a 25 job problem with 
the sum of E/T penalty minimization 

Avg. E/W Alg.ill Alg.lV 
(total cost) (total cost) 

0.32 663 663 
0.45 944 941 
0.49 989 986 
0.54 1151 1151 
0.57 1146 1146 
0.64 1141 1141 
0.75 1300 1300 
0.80 1348 1348 
0.84 1480 1480 
0.91 1500 1500 

total 
cost 

1600 -

Avg. E/W 

• Alg.lll 

-Alg.lV 

Figure D.23 Performance comparison of algorithms III & IV relative to the 
ratio of earliness penalty and tardiness penalty in a 25 job 
problem with the sum of weighted Err penalty minimization 
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Table D.24 Performance comparison of algorithms III & IV relative to the ratio 
of earliness penalty and tardiness penalty in a 30 job problem with 
the sum of E/T penalty minimization 

Avg.E/W Alg.lll Alg.lV 
(total cost) (total cost) 

0.32 418 418 
0.35 388 388 
0.37 386 386 
0.40 401 401 
0.44 366 366 
0.48 317 317 
0.50 359 359 
0.53 321 321 
0.60 334 334 
0.90 288 288 

Alg.lll 
-B-Alg.lV 

250 

200 
0 0.2 0.4 0.6 0.8 1 

Avg. EM 

Figure D.24. Performance comparison of algorithms III & IV relative to the 
ratio of earliness penalty and tardiness penalty in a 30 job 
problem with the sum of weighted E/T penalty minimization 

total 
cost 350 

300 
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D.1 Inferences drawn 

D.1.1 Algorithms 1 and II 

1. Based on the percentage of job conflicts for the scenarios involving the 

minimization of earliness penalty, both algorithms I and II showed no clear difference 

in performance. The solutions they produced followed the same general trend. 

2. Similarly, the solutions produced by algorithms I and II followed the same 

{^*0 
general trend relative to changes in the ratio of for the earliness penalty 

problem. In general, the relative perfonnance of the algorithms seems to be 

insensitive to the changes in percentage of job conflicts or the ratio of for the 

earliness penalty problem. 

3. Although the relationship is not linear, the general trend is that as the 

percentage of conflict increases, the total earliness penalty incurred for a given 

problem also increases. 

4. For the earliness penalty minimization problem, the total penalty cost 

incurred for a problem tends to increase as the average ratio of E/t increases. 

D.I.2 Algorithms III and IV 

1. The solutions produced by algorithms III and IV followed the same 

fi>;] 
general trend relative to changes in percentage of job conflicts, the ratio of , 

the ratio of and the ratio of ' for the eariiness and tardiness penalty 

problem. In general, the relative performance of the algorithms seems to be 

insensitive to the changes in percentage of job conflicts or the ratio of or the 

f"'] 
ratio of or the ratio of ^ for the eariiness and tardiness penalty problem. 
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2. Although the relationship is not linear, the general trend is that as the 

percentage of conflict increases, the total sum of earliness and tardiness penalty 

incurred for a given problem also increases. 

3. For the sum of weighted earliness and tardiness penalty minimization 

problem, the total penalty cost incurred for a problem tends to increase as the 

average ratio of E/t or W/t increases. 



www.manaraa.com

167 

REFERENCES 

[1] Abdul-Razaq, T.S., and Potts, C.N.,"Dynamic Programming State-Space 
Relaxation for Single-Machine Scheduling," Journal of the Operational 
Research Society, Vol. 39, No. 2, pp. 141-152 (1988). 

[2] Arkin, E.M., and Roundy, R.O., "Weighted-Tardiness Scheduling on Parallel 
Machines with Proportional Weights," Operations Research. Vol. 30, No. 1, 
pp. 64-81 (1991). 

[3] Asano, M., and Ohta, H., "Single Machine Scheduling Using Dominance 
Relation to Minimize Earliness Subject to Ready and Due Times," 
intemationalJoumal of Production Economics, Vol. 44, pp. 35-43 (1996). 

[4] Bagchi, U., Sullivan, R.S., Chang, Y.L., "Minimize Mean Absolute Deviation 
of Completion Times about a Common Due Date," Naval Research Logistics 
Quarterly, Vol. 33, pp. 227-240 (1986). 

[5] Baker, K., and Schrage, L., "Finding an Optimal Sequence by Dynamic 
Programming: an extension to precedence-related tasks," Operations 
Research, Vol. 26, pp. 111-120 (1978). 

[6] Baker, K.R., and Scudder, G.D.,"Sequencing with Earliness and Tardiness 
Penalties: A Review," Operations Research, Vol. 38, No. 1, pp. 22-36 (1990). 

[7] Chand, S., and Schneeberger, H.,"Single Machine Scheduling to Minimize 
Weighted Earliness Subject to No Tardy Jobs," European journal of 
Operational Research, Vol. 34, pp. 221-230 (1988). 

[8] Chang, P.C., and Lee, H.C., "A Greedy Heuristic for Bicriterion Single 
Machine Scheduling Problems," Computers and Industrial Engineering, Vol. 
22, No. 2, pp. 121-131 (1992). 

[9] Chang, P.C., "A Branch and Bound Approach for Single Machine Scheduling 
with Earliness and Tardiness Penalties," Computers and Mathematics with 
Applications, Vol. 37, pp. 133-144 (1999). 

[10] Chen, J.P., and Wilhelm, W.E.,"An Evaluation for Allocating Components to 
Kits in Small Lot, Multi-Echelon Assembly Systems," IntemationalJoumal of 
Production Research, Vol. 31, No. 12, pp. 2835-2856 (1993). 

[11] Chen, J.F., and Wilhelm, W.E.,"Optimizing the Allocating of Components to 
Kits in Small Lot, Multi-Echelon Assembly Systems," Naval Research 
Logistics, Vol. 41, pp. 229-256 (1994). 



www.manaraa.com

168 

[12] Chhajed, D.,"A Fixed Interval Due-Date Scheduling Problem with Earliness 
and Due-Date Costs," European Journal of Operational Research, Vol. 84, 
pp. 385-401 (1995). 

[13] Christofides, N., Mingozzi, A., Toth, P.,"State-Space Relaxation Procedures 
for the Computation of Bounds to Routing Problems," Networks, Vol. 11, pp. 
145-164 (1981). 

[14] Davis, J.S., and Kanet, J.J.,"Single-Machine Scheduling with Early and 
Tardy Completion Costs," Naval Research Logistics, Vol. 40, pp. 85-101 
(1993). 

[15] Doctor, S.R., Cavalier, T.M., and Egbelu, P.J.,"Scheduling for Machining and 
Assembly in a Job-Shop Environment," IntemationalJoumal of Production 
Research, Vol. 31, No. 6, pp. 1275-1297 (1993). 

[16] Fisher, M.L., "A Dual Algorithm for the One-Machine Scheduling Problem," 
Mathematical Programming, Vol. 11, pp 229-251 (1976). 

[17] Fry, T.D., Armstrong, R.D., and Blackstone, J.H.,"Minimizing Weighted 
Absolute Deviation in Single Machine Scheduling," HE Transactions, Vol. 19 
No. 4, pp. 445-450 (1987). 

[18] Fry, T.D., Armstrong, R.D., and Rosen, L.D., "Single Machine Scheduling to 
Minimize Mean Absolute Lateness: A Heuristic Solution," Computers & 
Operations Research, Vol. 17, No. 1, pp. 105-112 (1990). 

[19] Garey, M., Tarjan, R., and Wilfong, G.," One-Processor Scheduling with 
Symmetric Eailiness and Tardiness Penalties," Mathematics of Operations 
Research, Vol. 13, pp. 330-348 (1988). 

[20] Hall, N.G., and Posner, M.E.,"Eariiness-Tardiness Scheduling Problems, I: 
Weighted Deviation of Completion Times about a Common Due Date," 
Operations Research, Vol. 39, No. 5, pp.836-846 (1991). 

[21] Hall, N.G., Kubiak, W., and Sethi, S.P.,"Earilness-Tardiness Scheduling 
Problems, II; Deviation of Completion Times about a Restrictive Common 
Due Date," Operations Research, Vol. 39, No. 5, pp.847-856 (1991). 

[22] Kanet, J.,"Minimizing the Average Deviation of Job Completion Times about 
a Common Due Date," Naval Research Logistics, Vol. 28, pp. 643-651 
(1981). 



www.manaraa.com

169 

[23] Kao, E.P.C., and Queyranne, M.," On Dynamic Programming Methods for 
Assembly Line Balancing, Operations Research, Vol. 30, pp. 375-390 (1982). 

[24] Kim, Y.D., and Yano, C.A., "Minimizing Mean Tardiness and Earliness in 
Single-Machine Scheduling Problems with Unequal Due Dates," Naval 
Research Logistics, Vol. 41, pp. 913-933 (1994). 

[25] Lawler, L.E.,"A Pseudopolynomial Algorithm for Sequencing Jobs to 
Minimize Total Tardiness," Annuals of Discrete Mathematics, Vol. 1. pp. 331-
342 (1977). 

[26] Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P., "Complexity of Machine 
Scheduling Problems," Annuals of Discrete Mathematics, Vol. 1, pp. 343-362 
(1977). 

[27] McKoy, D.C., "Minimizing Production Flow Time in a Process and Assembly 
Job Shop," Ph.D. thesis. Department of Industrial and Manufacturing 
Engineering, Pennsylvania State University, university Park, Pennsylvania, 
USA (1995). 

[28] McKoy, D.C., and Egbelu, P.J., "Minimizing Production Flow Time in a 
Process and Assembly Job Shop," Intemational Journal of Production 
Research, Vol. 36, No. 8, pp. 2315-2332 (1998). 

[29] McKoy, D.C., and Egbelu, P.J., "Production Scheduling in a Process and 
Assembly Job Shop," Production Planning and Control. Vol. 10, No.1 pp. 76-
86 (1999). 

[30] Nof, S.Y., Wilhelm, W.E., and Wamecke, H., Industrial assembly. Chapman 
& Hall, London, UK (1997). 

[31] Ow, P.S., and Morton, T.E.,The Single Machine Eariy/Tardy Problem," 
Management Science, Vol. 35, No. 2, pp. 177-191 (1989). 

[32] Qi, X., and Tu, F.S.,"Scheduling a Single Machine to Minimize Eariiness 
Penalties Subject to the SLK due-date Determination method," European 
Joumal of Operational Research, Vol. 105, pp. 502-508 (1998). 

[33] Ramudhin, A., and Marier, P.,"The Generalized Shifting Bottleneck 
Procedure," European Joumal of Operational Research, Vol. 93, pp. 34-48 
(1996). 

[34] Smith, W.E., "Various Optimizers for Single Stage Production," Naval 
Research Logistics Quarterly, Vol. 3, No. 1, pp. 56-66 (1956). 



www.manaraa.com

170 

[35] Sridharan, V.. and Zhou, Z.,"A Decision Theory Based Scheduling 
Procedure for Single-machine Weighted Earliness and Tardiness Problems," 
European Journal of Operational Research, Vol. 94, pp. 292-301 (1996). 

[36] Sundararaghavan, P., and Ahmed, M.,"Minimizing the Sum of Absolute 
Lateness in Single-Machine and Muitimachine Scheduling," Naval Research 
Logistics Quarterly, Vol. 31, pp. 325-333 (1984). 

[37] Sung, C.S., and Joo, U.G.,"A Single Machine Scheduling Problem with 
Earliness/Tardiness and Starting Time Penalties under a Common Due 
Date," Computers & Operations Research, Vol. 19, No, 8, pp. 757-766 
(1992). 

[38] Szwarc, W.,"Adjacent Orderings in Single-Machine Scheduling with 
Earliness and Tardiness Penalties," Naval Research Logistics, Vol. 40, pp. 
229-243 (1993). 

[39] Szwarc, W., and Liu, J.J.,"Weighted Tardiness Single Machine Scheduling 
with Proportional Weights," Management Science, Vol. 39, No. 5, pp. 626-
632 (1993). 

[40] Verma, S., and Dessouky, M.,"Singlie-Machine Scheduling of Unit-Time 
Jobs with Earliness and Tardiness Penalties," Mathematics of Operations 
Research, Vol. 23, No. 4, pp. 930-943 (1998). 

[41] Yano, C.A., and Kim, Y.D.,"Algorithms for a Class of Single-Machine 
Weighted Tardiness and Eariiness Problems," European Joumal of 
Operational Research, Vol. 52, pp. 167-178 (1991). 



www.manaraa.com

171 

ACKNOWLEGMENTS 

I would like to thank the many people who have supported and helped me to 

complete this research. First I would like to express gratitude to my advisor Dr. Pius 

J. Egbelu for his support, guidance, and encouragement throughout the process of 

doing this work. This research would not have been possible without him. I would 

also like to thank my committee members: Dr. Timothy Van Voorhis who provided 

much help with formulating mathematical models. Dr. Douglas D. Gemmill, Dr. John 

Wacker, and Dr. W. Robert Stephenson for their review of this work and many 

helpful comments. 

I would especially like to thank my roommate Nawapak Eua-anant, who not 

only suggested to me how to construct the data structure for the research, but also 

encouraged me with my graduate studies. I would also like to thank all of my friends 

for their support. 

Finally, I would like to thank my parents, my brother and sisters for their love, 

support and encouragement. 


	2000
	Scheduling based on earliness and tardiness criteria in assembly job shops
	Supachai Pathumnakul
	Recommended Citation


	 

